

EPISTEMUS 2025; Núm. 38, Vol. 19

DOI: https://doi.org/10.36790/epistemus.v19i38.457 www.epistemus.unison.mx

Scientific Production on Artificial Intelligence in Latin America: A Bibliometric Analysis

CHRISTIAN CARRASCO-AHEN¹, GIOVANA CASTILLO ARROSQUIPA², GABRIELA PALACIOS TICONA³, MARIELA SANCHEZ-CORDOVA⁴

ABSTRACT

This study analyzes the scientific production on artificial intelligence (AI) in Latin America between January 2020 and July 2025. A bibliometric methodology was applied based on publications indexed in Scopus and extracted through the OECD Policy Observatory panel on AI. Publications were classified by country, document type, and impact level according to the FWCI: high (>1.5), medium (0.5–1.5), and low (<0.5). The results show a strong concentration in Brazil (45.87%), followed by Mexico (18.46%), Colombia (9.41%) and Chile (8.93%). Ecuador (5.09%), Peru (4.12%) and Argentina (3.12%) have a growing participation, although with less international visibility. It concludes that, despite regional progress, structural asymmetries persist in scientific capacity. This article provides empirical evidence to support the design of public policies in science and technology, contributing to the achievement of SDG 9 and SDG 17.

Key words: Latin America, artificial intelligence, scientific production, bibliometric analysis.

Autor de Correspondencia: Mariela Sánchez-Córdova, 025102145k@uandina.edu.pe

Recibido: 22 / 07 / 2025 Aceptado: 09 / 10 / 2025 Publicado: 03 / 11 / 2025

Cómo citar este artículo:

Carrasco-Ahen, C. J., Castillo Arrosquipa, G., Palacios Ticona, G. S., & Sanchez-Cordova, M. (2025). Producción Científica sobre Inteligencia Artificial en América Latina: Un Análisis Bibliométrico. EPISTEMUS, 19(38), e3820457. https://doi.org/10.36790/epistemus.v19i38.457

¹ D. Student in Educational Sciences, Graduate School, Andean University of Cusco, Cusco, Peru, 025102132f@uandina.edu.pe, ORCID https://orcid.org/0000-0002-6221-9150.

² D. Student in Educational Sciences, Graduate School, Andean University of Cusco, Cusco, Peru, 025102133b@uandina.edu.pe, ORCID https://orcid.org/0009-0001-7644-2716.

³ Master's Degree in Engineering with Project Management, Graduate School, Catholic University of Trujillo, Trujillo, Peru, 222102217i@uct.pe, ORCID https://orcid.org/0009-0005-2547-3941.

⁴ D. Student in Educational Sciences, Graduate School, Andean University of Cusco, Cusco, Peru, 025102145k@uandina.edu.pe, ORCID https://orcid.org/0000-0003-4497-212X.

Producción Científica sobre Inteligencia Artificial en América Latina: Un Análisis Bibliométrico

RESUMEN

Este estudio analiza la producción científica sobre inteligencia artificial (IA) en América Latina entre Enero 2020 hasta Julio de 2025. Se aplicó una metodología bibliométrica con base en publicaciones indexadas en Scopus y extraídas mediante el panel del Observatorio de Políticas de OCDE sobre IA. Las publicaciones se clasificaron por país, tipo de documento y nivel de impacto según el FWCI: alto (>1.5), medio (0.5–1.5) y bajo (<0.5). Los resultados muestran una fuerte concentración en Brasil (45.87 %), seguido de México (18.46 %), Colombia (9.41 %) y Chile (8.93 %). Ecuador (5.09 %), Perú (4.12 %) y Argentina (3.12 %) presentan una participación creciente, aunque con menor visibilidad internacional. Se concluye que, pese al progreso regional, persisten asimetrías estructurales en la capacidad científica. Este artículo aporta evidencia empírica para apoyar el diseño de políticas públicas en ciencia y tecnología, contribuyendo al logro del ODS 9 y el ODS 17.

Palabras clave: América Latina, inteligencia artificial, producción científica, análisis bibliométrico.

INTRODUCTION

Artificial intelligence (AI) has become one of the most disruptive and important technologies in science and technology in the last few years [1]. One of its most well-known parts is Generative AI (GenAI). This branch is known for being able to create new things like text, pictures, code, and music. It depends on models that have been trained on big datasets, like GPT-type language models and image generators like DALL·E [2], [3]. It has been amazing how quickly it has been adopted in fields like education, healthcare, the arts, and public administration. This growth has led to discussions about its moral, legal, and social effects [4], [5]. In this context, the amount of scientific work done on AI around the world has grown very quickly, especially between 2020 and 2024. This trend indicates a new stage in the progress of technological knowledge [6], [7].

From a regional perspective, Latin America exhibits a unique pattern [8]. Even though more people are interested in AI, notable differences in scientific output remain. Production is concentrated in a limited number of countries, and collaboration between institutions is still limited [9]. Moreover, although general bibliometric studies on AI exist, those specifically focusing on GenAI are still limited. Many also lack methodological rigor or a systematic regional focus [10]. This gap makes it hard to fully understand Latin America's scientific position in a field that is changing how knowledge is created and used [11].

In this context, it is imperative to systematize and critically assess the scientific output regarding AI in Latin America [12]. The absence of comparative studies analyzing trends by country, publication type, and impact level hinders precise diagnosis and the development of evidence-based regional science policies [13], [14]. Similarly, the lack of consolidated metrics makes it harder to see how Latin America is helping this new technology grow around the world [15].

This study aims to analyze the scientific production regarding AI in Latin America from January 2020 to July 2025, as well as to investigate its ramifications for science policy, regional collaboration, and technological advancement. The results of this study show that there are leading countries, new contributors, and structural differences. These results can help people make decisions about public policy, guide investment in research infrastructure, and encourage

collaboration at both the national and regional levels. The study aids in the formulation of inclusive, context-aware policies intended to mitigate disparities in Al-related scientific output and bolster the technological capabilities of underrepresented nations in Latin America.

METHODOLOGY

This study uses a quantitative, documentary design based on bibliometric analysis. The approach identifies publication patterns, geographic distribution, and impact levels in recent Al research across Latin America. The goal is to offer a structured, transparent, and reproducible method.

Data source and selection process

Data for this study were obtained from the OECD.Al Policy Observatory panel [16], which consolidates Scopus records. The analysis covered the period of January 2020 to July 2025 and followed an adapted PRISMA framework to ensure transparency and reproducibility.

Publications were identified using predefined descriptors such as "artificial intelligence (AI)," "machine learning (ML)," "deep learning (DL)," "generative artificial intelligence (GenAI)," "neural networks (NN)," and related terms. These descriptors were combined with institutional affiliations from Latin American countries to refine the search strategy. This approach ensured comprehensive coverage and generated the initial dataset for bibliometric analysis.

Duplicate records were removed using Scopus internal identifiers and then verified manually. Only documents with complete metadata and a verifiable institutional affiliation in Latin America were retained. Items were excluded if they were incomplete, lacked identifiable authorship or affiliation, were not peer-reviewed (e.g. editorials, notes, letters, or abstracts), or were unrelated to Al.

A controlled taxonomy of AI-related terms was created to harmonize concepts across datasets and ensure consistent classification. After applying all filters, the final corpus comprised 34 002 records. Documents were classified by type (articles, reviews, book chapters, conference papers, and other documents) and by impact level using the Field-Weighted Citation Impact (FWCI): high (FWCI > 1.5), medium $(0.5 < FWCI \le 1.5)$, and low $(FWCI \le 0.5)$.

Figure 1 summarizes the inclusion and exclusion criteria applied in the bibliometric analysis. The diagram shows the period, data source, affiliation, topics, publication types, and metadata standards used to include or exclude records. Together with the adapted PRISMA flow diagram, it provides a transparent overview of the selection process.

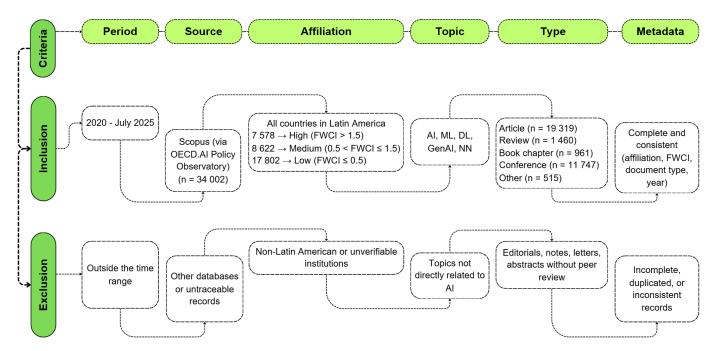


Figure 1. Criteria for inclusion and exclusion of bibliometric analysis.

Keyword co-occurrence analysis: thematic clusters and caps in Al scientific production

The extracted data was organized into analytic matrices using VOSviewer to represent networks and publication patterns. The graphical analysis allowed for a comparative interpretation of thematic structures and supported the identification of emerging gaps and dynamics within the Al scientific production in Latin America.

The co-occurrence network (Figure 2) reveals three main clusters. The red cluster corresponds to core AI methodologies, highlighting machine learning, deep learning, and neural network—based approaches. The green cluster reflects human-centered and health-related studies, encompassing demographic descriptors and clinical applications. The blue cluster represents methodological and bibliometric terms, including article types, algorithms, and prediction, functioning as a bridge

between the technical and applied domains. This structure evidences the thematic diversity and interconnectedness of AI scientific production in Latin America. Identifying these clusters highlights priority thematic areas and shows where collaboration opportunities may emerge between technical and applied domains, supporting evidence-based regional policies.

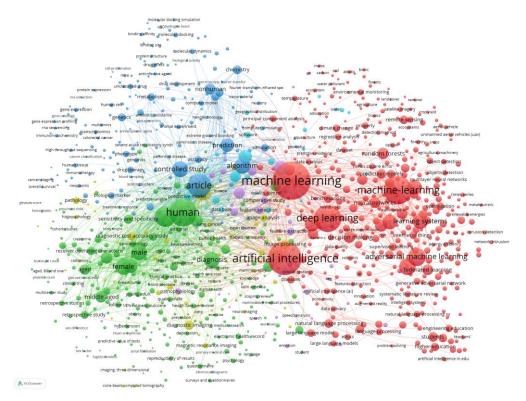


Figure 2. Keyword co-occurrence network for Al publications in Latin America.

RESULTS AND DISCUSSION

Quality classification: High impact

Figure 3 shows the distribution of high-impact scientific production (FWCI > 1.5) on AI in Latin America during 2020–2025. The figure reveals a strong concentration in a few countries. Brazil produces almost half of the region's high-impact output, followed by Mexico, Chile, and Colombia. Ecuador, Peru, and Argentina appear as moderate but steadily growing contributors. In contrast, most Central American and Caribbean nations show minimal participation, reflecting structural inequalities in research capacity, infrastructure, and international networks.

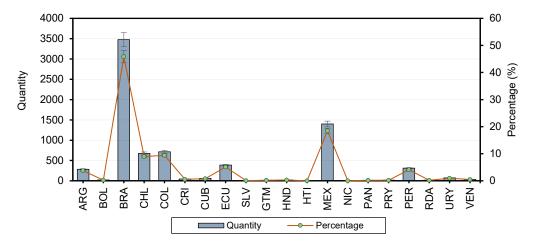


Figure 3. Number and percentage of Al publications in Latin America (FWCI > 1.5).

Figure 4 presents the evolution of high-impact publications over time. Across the period 2020–2025, the data reveal a mild upward trend, with peaks in Brazil and Mexico coinciding with moments of increased funding and international collaboration. Chile, Colombia, Ecuador, Peru, and Argentina display smaller but consistent gains, signaling the gradual consolidation of research teams and infrastructures in Al-related fields.

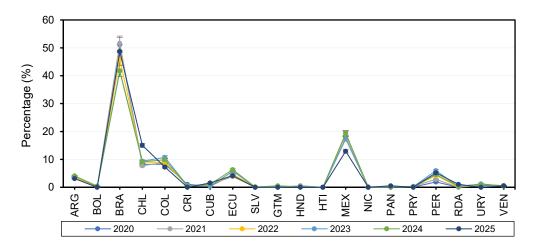


Figure 4. Annual percentage distribution of AI in Latin America (FWCI > 1.5).

Figure 5 illustrates how different types of documents are distributed among high-impact publications. In Brazil and Mexico, journal articles are the most common type of research output, showing that research is more advanced. However, a large number of conference proceedings

from Mexico, Chile, Colombia, and Ecuador indicate that early-stage and collaborative projects that have not yet been published in journals are becoming increasingly important. This combination of document types shows how mature AI scientific production is in different countries.

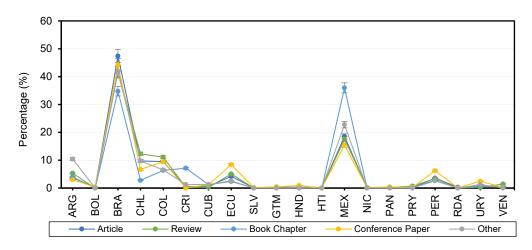


Figure 5. Percentage by type of AI document in Latin America (FWCI > 1.5).

The results indicate that Brazil, Mexico, Colombia, and Chile account for the highest percentages of high-impact scientific output related to AI in Latin America. Brazil's leading position is consistent with the findings of González-Argote et al. [17], who reported that 54% of AI-related articles from the country were produced through international collaboration, highlighting the strength of its scientific networks. Similarly, Del Carpio-Delgado et al. [18] emphasize that this leadership is sustained by a consolidated research infrastructure supported by alliances among universities, innovation centers, and technology companies. These prior studies reinforce the current results, showing that the combination of strong institutional capacity and international cooperation significantly enhances the quality and impact of AI-related scientific production in the region.

In addition, the prominence of GenAl–related terms within the co-occurrence network (Figure 2) indicates a shift from traditional machine-learning applications toward content creation and model-driven research. This trend reflects the rapid diffusion of GenAl tools and methodologies across Latin American research groups, particularly in countries with greater digital infrastructure and access to large-scale computing resources. By incorporating GenAl into their research agendas, leading nations are expanding the frontiers of Al science and positioning themselves in areas of

global technological relevance. This finding suggests that sustained investment in GenAl-related infrastructure, as well as training for early-career researchers, may help smaller countries accelerate their transition from low- to high-impact research outputs.

Quality classification: Medium impact

Figure 6 shows the total volume of medium-impact scientific output (0.5 < FWCI ≤ 1.5) in Latin America. The figure reveals that Brazil continues to dominate, holding nearly half of the region's medium-impact output. Mexico, Colombia, and Chile occupy the next positions, indicating consolidated research activity in terms of volume but still in transition toward higher citation impact. Ecuador, Peru, and Argentina exhibit steady gains, reflecting the progressive strengthening of institutional capacities. In contrast, most Central American and Caribbean countries maintain minimal participation, highlighting persistent inequalities in research capacity and international collaboration.

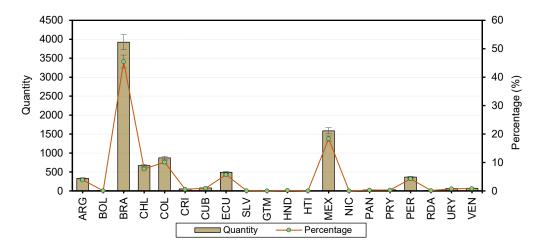


Figure 6. Number and percentage of Al publications in Latin America (0.5 < FWCl ≤ 1.5).

Figure 7 presents the evolution of medium-impact publications over time. The data show relative stability in Brazil and Mexico with mild fluctuations, while Chile, Colombia, Ecuador, Peru, and Argentina display consistent or slightly upward trends. The apparent decline in 2025 may be due to incomplete indexing of bibliographic databases. These patterns underscore how medium-impact publications can serve as a pipeline toward high-impact output, offering early signals of emerging research hubs.

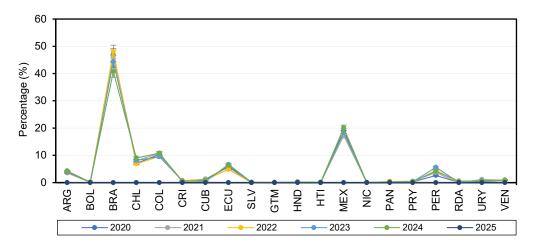


Figure 7. Annual percentage distribution of Al in Latin America (0.5 < FWCl ≤ 1.5).

Figure 8 details the distribution of document types among medium-impact publications. Brazil exhibits strong participation across all types, especially journal articles, conference papers, and book chapters. Mexico shows notable strength in book chapters, likely linked to institutional editorial policies and academic networks. Colombia, Chile, Ecuador, Peru, and Argentina maintain balanced distributions between articles, conferences, and reviews, indicating different stages of maturity and dissemination strategies. Countries with minimal participation remain below 1%, reinforcing the concentration of medium-impact production in a limited number of nations.

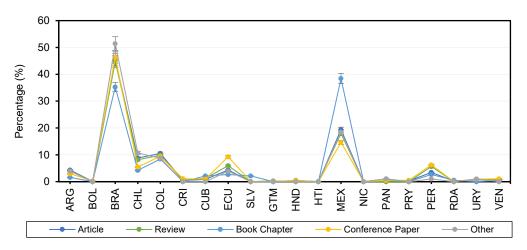


Figure 8. Percentage by type of AI document in Latin America (0.5 < FWCI ≤ 1.5).

Brazil is still the main country in Latin America that does Al-related scientific research, followed by Mexico and Colombia. This is true even when the impact is medium (0.5 < FWCl ≤ 1.5). This continuity is attributed not only to increased participation in journal articles and conference proceedings but also to public policies aimed at enhancing scientific research. In fact, international networks of collaboration and links with the productive sector have been promoted in Argentina, Brazil, Chile, Colombia, Costa Rica, Mexico, and Uruguay, along with national Al initiatives and strategies focused on innovation and ethical frameworks. This has greatly improved the ability of institutions to do scientific research in Al [19], [20], [21]. On the other hand, Ecuador and Argentina have become more well-known by forming academic groups that focus on machine learning and publishing more papers with authors from other countries. Both have made their scientific presence stronger [12], [22].

Overall, findings indicate that medium-impact publications are a strategic way for Latin American countries to build up their research capacity, try out new ways of working together, and move to higher-impact scientific production. Building better infrastructure and encouraging international partnerships in this area can speed up the growth of a more balanced and globally competitive Al scientific production.

Quality classification: Low impact

Figure 9 displays the volume and percentage of low-impact scientific publications (FWCI ≤ 0.5) in Latin America between 2020 and 2025. Brazil accounts for over 40% of these publications, followed by Mexico, Colombia, and Chile. Peru, Ecuador, and Argentina also contribute significantly, indicating sustained efforts to strengthen their scientific presence despite limited international visibility. This distribution highlights the coexistence of consolidated research hubs and emerging lines still in development, as well as the need to reinforce regional publishing capacity, promote cross-border collaboration, and improve access to editorial platforms.

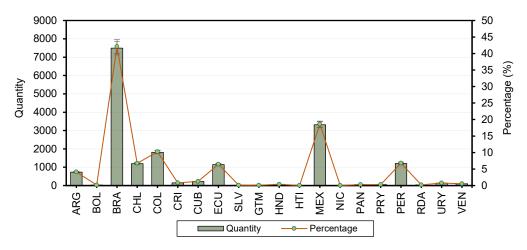


Figure 9. Number and percentage of Al publications in Latin America (FWCI ≤ 0.5).

Figure 10 presents the distribution of low-impact output by document type. Brazil leads with more than 40% of the total, followed by Mexico and Colombia, all significantly above the regional average. These countries stand out particularly in book chapters and review articles, surpassing 30% in Brazil and reaching 40% in Mexico, suggesting editorial strategies oriented toward broad knowledge dissemination. Peru and Argentina slightly exceed the regional average with more diversified outputs across journal articles, conference proceedings, and book chapters. In contrast, fourteen Latin American countries report shares below 2%, and some such as Haiti, Nicaragua, and El Salvador lack representation in certain publication types. This scenario reveals persistent structural segmentation within the regional scientific output, as Brazil, Mexico, and Colombia together account for over 70% of total low-impact output.

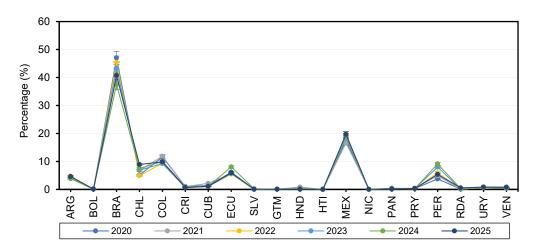


Figure 10. Annual percentage distribution of AI in Latin America (FWCI ≤ 0.5).

Figure 11 shows the annual percentage distribution of low-impact publications during 2020–2025. Brazil consistently leads even within this lower-impact segment, followed by Mexico and Colombia, forming a triad that accounts for most regional output at this level. Peru, Ecuador, and Chile display moderate but steady contributions, each surpassing 5%. By contrast, Central American and Caribbean nations remain below 1%, reflecting a persistent structural gap in scientific publishing capacity. This pattern shows that concentration stays the same no matter how visible it is. Countries with better infrastructure and institutional resources are always in charge, no matter what the impact category is.

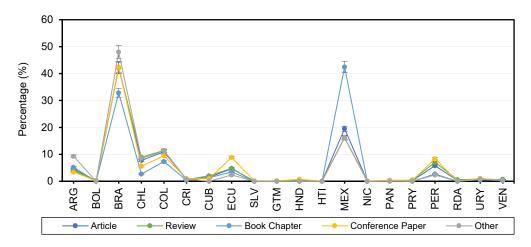


Figure 11. Percentage by type of Al document in Latin America (FWCl ≤ 0.5).

Brazil's dominance in the low-impact segment is linked to a large number of documents that fall into the "other" category, such as technical documents, manuals, and policy briefs. This diversification shows that people are trying to make knowledge more accessible by making it available to everyone. Policies like Brazil's "Plano IA para o Bem de Todos" and national Al strategies in Mexico and Colombia have led to the creation of collaboration networks, editorial platforms, and institutional capacities [23], [24]. Peru consistently contributes, especially in the form of journal articles and conference papers, indicating increasing efforts to enhance national research capacity in Al. Recent studies show that academic networks related to disruptive technologies are growing in Peru and Argentina. This is because institutions are working together more and access to digital infrastructure is getting better [25], [26].

Figures 9, 10, and 11 show that low-impact publications are a good way to start and develop Al scientific production in Latin America. They show how countries use lower-impact formats, such as book chapters, briefs, and whitepapers, to gain experience, share knowledge, and make connections. At this level, improving editorial skills, fostering cross-border collaborations, and supporting open access policies accelerate progress towards more impactful outcomes and decrease differences in Al scientific production across regions.

CONCLUSIONS

The bibliometric analysis carried out between 2020 and 2025 in Latin America allows the following conclusions to be drawn:

1. Scientific production and structural disparities.

This study fulfilled its objective of analyzing scientific production on AI in Latin America through a bibliometric approach that classified publications by document type, country of affiliation, and impact level (FWCI). The findings confirm an overall increase in research activity in the region, although this growth remains highly concentrated in a small number of countries. Brazil (45.87%), Mexico (18.46%), Colombia (9.41%), and Chile (8.93%) consistently lead across all impact categories. This concentration reveals enduring structural disparities related to research infrastructure, international cooperation, and the implementation of national policies for scientific development.

2. Diversification and early progress.

The study identified a diversification of publication formats, particularly in countries that have implemented policies aimed at democratizing access to knowledge, such as Brazil. At the same time, countries including Ecuador (5.09%), Peru (4.12%), and Argentina (3.12%) are demonstrating early progress, supported by the development of emerging academic networks and improved access to digital research platforms. However, the limited participation of several Central American and Caribbean nations underscores the urgent need for coordinated regional strategies to reduce inequality in the production and dissemination of scientific knowledge.

3. Alignment with Sustainable Development Goals.

The contribution of this study aligns with Sustainable Development Goal 9 (Industry, Innovation, and Infrastructure) and Sustainable Development Goal 17 (Partnerships for the Goals), as it provides empirical evidence to inform public policies and regional cooperation frameworks in science and technology. In this context, promoting collaborative research environments, ensuring sustained investment in research and development, and expanding equitable access to knowledge are essential steps toward consolidating an inclusive, ethical, and context-sensitive approach to AI in Latin America.

4. Recommendations to strengthen underrepresented countries.

To address the gaps identified, the study recommends:

- Establishing regional Al research consortia to pool resources, share infrastructures, and support collaborative projects involving sub represented countries.
- Developing targeted funding programs (national and international) to support early-career researchers and laboratories in emerging Al hubs, enabling them to access highperformance computing, data repositories, and specialized training.
- Implementing regional training and exchange programs focused on AI methodologies, generative AI, and ethical frameworks to build human capital and strengthen institutional capacity.
- Supporting open-access and multilingual publication platforms to enhance the visibility of research from smaller countries, ensuring broader dissemination and citation.
- Encouraging public-private partnerships to link universities, innovation centers, and industry in sub represented nations, thus facilitating technology transfer and practical applications of AI research.

These recommendations provide actionable steps to reduce disparities in AI research capacity, improve international visibility, and foster a more balanced, globally competitive AI scientific production across Latin America.

REFERENCES

- [1] C. Delcea, I. Nica, Ş. Ionescu, B. Cibu, and H. Ţibrea, "Mapping the Frontier: A Bibliometric Analysis of Artificial Intelligence Applications in Local and Regional Studies," Algorithms, vol. 17, no. 9, p. 418, Sep. 2024, DOI: https://doi.org/10.3390/a17090418
- [2] T. Farrelly and N. Baker, "Generative Artificial Intelligence: Implications and Considerations for Higher Education Practice," Educ Sci (Basel), vol. 13, no. 11, p. 1109, Nov. 2023, DOI: https://doi.org/10.3390/educsci13111109
- [3] W. Xie, A. Hu, Q. Xie, J. Chen, R. Wan, and Y. Liu, "Bibliometric analysis and review of Al-based video generation: research dynamics and application trends (2020–2025)," Discover Computing, vol. 28, no. 1, p. 130, Jun. 2025, DOI: https://doi.org/10.1007/s10791-025-09628-9
- [4] Y. K. Dwivedi et al., "Opinion Paper: 'So what if ChatGPT wrote it?' Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy," Int J Inf Manage, vol. 71, p. 102642, Aug. 2023, DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102642
- [5] United Nations Educational, Scientific and Cultural Organization (UNESCO), *Guidance for generative AI in education and research*. Francia, F. Miao and W. Holmes (Eds.), p. 44, Aug. 2023. DOI: https://doi.org/10.54675/EWZM9535
- [6] S. Singh, S. Singh, S. Kraus, A. Sharma, and S. Dhir, "Characterizing generative artificial intelligence applications: Text-mining-enabled technology roadmapping," Journal of Innovation & Knowledge, vol. 9, no. 3, p. 100531, Jul. 2024, DOI: https://doi.org/10.1016/j.jik.2024.100531
- [7] M. Mariani and Y. K. Dwivedi, "Generative artificial intelligence in innovation management: A preview of future research developments," J Bus Res, vol. 175, p. 114542, Mar. 2024, DOI: https://doi.org/10.1016/j.jbusres.2024.114542
- [8] M. Pimentel, J. Veliz, and L. Lazo, "Analysis of Intelligence and National Security in Latin America: Bibliometric Analysis," Compendium: Cuadernos de Economía y Administración, vol. 11, no. 1, pp. 1-27, Apr. 2024, DOI: https://doi.org/10.46677/compendium.v11i1.1245
- [9] J. Corzo-Zavaleta, Y. Navarro-Castillo, and M. Ugaz-Rivero, "Uso de la inteligencia artificial en la educación universitaria," Desde el Sur, vol. 17, no. 1, p. e0010, Jan. 2025, DOI: http://dx.doi.org/10.21142/des-1701-2025-0010
- [10] D. M. Obreja, R. Rughiniş, and D. Rosner, "Mapping the conceptual structure of innovation in artificial intelligence research: A bibliometric analysis and systematic literature review," Journal of Innovation & Knowledge, vol. 9, no. 1, p. 100465, Jan. 2024, DOI: https://doi.org/10.1016/j.jik.2024.100465
- [11] A. de la Torre and M. Baldeon-Calisto, "Generative Artificial Intelligence in Latin American Higher Education: A Systematic Literature Review," in 2024 12th International Symposium on Digital Forensics and Security (ISDFS), IEEE, Apr. 2024, p. 7. DOI: https://doi.org/10.1109/ISDFS60797.2024.10527283
- [12] T. Salahuddin and H. Vergil, "Hedonistic Pursuits and Well-Being: A Retrospective Analysis of Expectations and Reality," Pakistan Journal of Life and Social Sciences (PJLSS), vol. 22, no. 2, 2024, DOI: https://doi.org/10.57239/PJLSS-2024-22.2.00865

- [13] F. Wu, Y. Dang, and M. Li, "A Systematic Review of Responses, Attitudes, and Utilization Behaviors on Generative AI for Teaching and Learning in Higher Education," Behavioral Sciences, vol. 15, no. 4, p. 467, Apr. 2025, <u>DOI: https://doi.org/10.3390/bs15040467</u>
- [14] P. Gupta, B. Ding, C. Guan, and D. Ding, "Generative AI: A systematic review using topic modelling techniques," Data Inf Manag, vol. 8, no. 2, p. 100066, Jun. 2024, <u>DOI: https://doi.org/10.1016/j.dim.2024.100066</u>
- [15] M. I. Denegri-Velarde, B. P. Solis-Trujillo, M. D. C. E. Ancaya-Martínez, C. A. Zerga-Morante, A. P. Espiritu-Martinez, and R. Romero-Carazas, "ChatGPT and Artificial Intelligence a Bibliometric Analysis in Latin America," International Journal of Religion, vol. 5, no. 5, pp. 931–939, Apr. 2024, DOI: https://doi.org/10.61707/amhw4161
- [16] OECD.AI, "data from Elsevier," OECD Better Policies For Better Lives. Accessed: Aug. 4, 2025. [Online]. Available: https://oecd.ai/
- [17] J. Gonzalez-Argote et al., "Trends in scientific output on artificial intelligence and health in Latin America in Scopus," ICST Transactions on Scalable Information Systems, Apr. 2023, <u>DOI: https://doi.org/10.4108/eetsis.vi.3231</u>
- [18] F. Del Carpio-Delgado et al., "Telemedicine in Latin America: a bibliometric analysis," EAI Endorsed Trans Pervasive Health Technol, vol. 9, Oct. 2023, DOI: https://doi.org/10.4108/eetpht.9.4273
- [19] M. Flórez, "The Shaping of Al Policies in Latin America: A Study of International Influence and Local Realities," in Public Governance and Emerging Technologies, Cham: In: Goossens, J., Keymolen, E., Stanojević, A. (eds) Public Governance and Emerging Technologies. Springer, Cham, 2025, pp. 263–287. DOI: https://doi.org/10.1007/978-3-031-84748-6 12
- [20] M. Humeres, D. Cotoras, R. Moretti, I. Oyarzún-Merino, T. Correa, and C. López, "Cooling down Al regulation controversies: Three closure processes in the Chilean legislative arena," Big Data Soc, vol. 12, no. 1, Mar. 2025, <u>DOI: https://doi.org/10.1177/20539517241311067</u>
- [21] F. Filgueiras, "Designing artificial intelligence policy: Comparing design spaces in Latin America," Lat Am Policy, vol. 14, no. 1, pp. 5–21, Mar. 2023, DOI: https://doi.org/10.1111/lamp.12282
- [22] G. Herrera-Franco, N. Montalván-Burbano, C. Mora-Frank, and Lady Bravo-Montero, "Scientific Research in Ecuador: A Bibliometric Analysis," Publications, vol. 9, no. 4, p. 55, Dec. 2021, DOI: https://doi.org/10.3390/publications9040055
- [23] A. Veronese and A. Nunes L.E.L., "Regulatory paths for artificial intelligence in Latin American countries with data protection law frameworks: limits and possibilities of integrating policies," Revista Latinoamericana de Economía y Sociedad Digital, no. 2, Aug. 2021, DOI: https://doi.org/10.53857/CJFB4918
- [24] R. Zambrano and J. M. Sanchez-Torres, "Al Public Policies in Latin America: Disruption or more of the same?," in 14th International Conference on Theory and Practice of Electronic Governance, New York, NY, USA: ACM, Oct. 2021, pp. 25–33. <u>DOI: https://doi.org/10.1145/3494193.3494294</u>
- [25] P. Lara-Navarra, A. Ferrer-Sapena, E. Ismodes-Cascón, C. Fosca-Pastor, and E. A. Sánchez-Pérez, "The Future of Higher Education: Trends, Challenges and Opportunities in Al-Driven Lifelong Learning in Peru," Information, vol. 16, no. 3, p. 224, Mar. 2025, DOI: https://doi.org/10.3390/info16030224

[26] A. Deroncele-Acosta, R. M. E. Sayán-Rivera, A. D. Mendoza-López, and E. D. Norabuena-Figueroa, "Generative Artificial Intelligence and Transversal Competencies in Higher Education: A Systematic Review," Applied System Innovation, vol. 8, no. 3, p. 83, Jun. 2025, DOI: https://doi.org/10.3390/asi8030083

Cómo citar este artículo:

Carrasco-Ahen, C. J., Castillo Arrosquipa, G., Palacios Ticona, G. S., & Sanchez-Cordova, M. (2025). Producción Científica sobre Inteligencia Artificial en América Latina: Un Análisis Bibliométrico. EPISTEMUS, 19(38), e3820457. https://doi.org/10.36790/epistemus.v19i38.457