Aplicaciones tecnológicas de las nanopartículas en la medicina e industria

Autores/as

DOI:

https://doi.org/10.36790/epistemus.v16i33.223

Palabras clave:

Nanopartículas, Avances Nanotecnológicos, Nanomateriales

Resumen

Los avances tecnológicos en la ciencia de los materiales han impactado en diferentes áreas del conocimiento como la medicina, los alimentos, los cosméticos, dispositivos electrónicos, entre otros, con el propósito de aprovechar las propiedades de las nanopartículas y resolver problemáticas actuales en beneficio de la sociedad. En esta revisión se presenta una descripción general y actualizada de las aplicaciones de las nanopartículas en diferentes áreas del conocimiento. Se muestra la importancia de los avances nanotecnológicos actuales para combatir diferentes bacterias patógenas, el virus SARS-CoV-2 y tratamientos de enfermedades cancerígenas con nanopartículas. Por otra parte, se discute brevemente la importancia de las nanopartículas en la industria textil, automotriz y agroindustria como alternativa para obtener telas inteligentes, mejoramiento de estética en carros, durabilidad de partes y disminución de contaminantes por CO2, así como en la producción de alimentos seguros, de alta calidad y sostenibles. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter, vol. 29, no. 20, p. 203002, Apr. 2017, doi: 10.1088/1361-648X/AA60F3. DOI: https://doi.org/10.1088/1361-648X/aa60f3

L. Lee, G. Seddon, F. Stephens, S. Halliday, and L. Lushington, “Stained glass,” p. 207, 1976.

B. G. Chiari-Andréo, M. G. J. De Almeida-Cincotto, J. A. Oshiro, C. Y. Y. Taniguchi, L. A. Chiavacci, and V. L. B. Isaac, “Nanoparticles for cosmetic use and its application,” Nanoparticles Pharmacother., pp. 113–146, Jan. 2019, doi: 10.1016/B978-0-12-816504-1.00013-2. DOI: https://doi.org/10.1016/B978-0-12-816504-1.00013-2

H. Joshi et al., “Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and in vivo evaluations,” Photodermatol. Photoimmunol. Photomed., vol. 34, no. 1, pp. 69–81, Jan. 2018, doi: 10.1111/PHPP.12335. DOI: https://doi.org/10.1111/phpp.12335

K. N. M. Dantas et al., “Antimycotic nail polish based on humic acid-coated silver nanoparticles for onychomycosis,” J. Chem. Technol. Biotechnol., vol. 96, no. 8, pp. 2208–2218, Aug. 2021, doi: 10.1002/JCTB.6676. DOI: https://doi.org/10.1002/jctb.6676

M. Abdukhakimov, R. Khaydarov, P. T. Krishnamurthy, and S. Evgrafova, “Silver-Nanoparticle-Embedded Antimicrobial Paints,” Handb. Consum. Nanoproducts, pp. 1–10, 2021, doi: 10.1007/978-981-15-6453-6_105-1. DOI: https://doi.org/10.1007/978-981-15-6453-6_105-1

J. E. Brame, C. Liddicoat, C. A. Abbott, and M. F. Breed, “The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans,” Sci. Total Environ., vol. 777, p. 146063, Jul. 2021, doi: 10.1016/J.SCITOTENV.2021.146063. DOI: https://doi.org/10.1016/j.scitotenv.2021.146063

H. Wang, C. X. Wei, L. Min, and L. Y. Zhu, “Good or bad: gut bacteria in human health and diseases,” http://mc.manuscriptcentral.com/tbeq, vol. 32, no. 5, pp. 1075–1080, Sep. 2018, doi: 10.1080/13102818.2018.1481350. DOI: https://doi.org/10.1080/13102818.2018.1481350

L. Serwecińska, “Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health,” Water 2020, Vol. 12, Page 3313, vol. 12, no. 12, p. 3313, Nov. 2020, doi: 10.3390/W12123313. DOI: https://doi.org/10.3390/w12123313

S. Tang and J. Zheng, “Antibacterial Activity of Silver Nanoparticles: Structural Effects,” Adv. Healthc. Mater., vol. 7, no. 13, p. 1701503, Jul. 2018, doi: 10.1002/ADHM.201701503. DOI: https://doi.org/10.1002/adhm.201701503

X. H. Vu, T. T. T. Duong, T. T. H. Pham, D. K. Trinh, X. H. Nguyen, and V. S. Dang, “Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 9, no. 2, p. 025019, Jun. 2018, doi: 10.1088/2043-6254/AAC58F. DOI: https://doi.org/10.1088/2043-6254/aac58f

R. H. Lira Saldivar et al., “Potencial de la nanotecnología en la agricultura,” Acta Univ., vol. 28, no. 2, pp. 9–24, Jun. 2018, doi: 10.15174/AU.2018.1575. DOI: https://doi.org/10.15174/au.2018.1575

I. X. Yin, J. Zhang, I. S. Zhao, M. L. Mei, Q. Li, and C. H. Chu, “The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry,” Int. J. Nanomedicine, vol. 15, p. 2555, 2020, doi: 10.2147/IJN.S246764. DOI: https://doi.org/10.2147/IJN.S246764

M. Chandhru, R. Logesh, S. K. Rani, N. Ahmed, and N. Vasimalai, “One-pot green route synthesis of silver nanoparticles from jack fruit seeds and their antibacterial activities with escherichia coli and salmonella bacteria,” Biocatal. Agric. Biotechnol., vol. 20, p. 101241, Jul. 2019, doi: 10.1016/J.BCAB.2019.101241. DOI: https://doi.org/10.1016/j.bcab.2019.101241

G. Benetti et al., “Tailored Ag–Cu–Mg multielemental nanoparticles for wide-spectrum antibacterial coating,” Nanoscale, vol. 11, no. 4, pp. 1626–1635, Jan. 2019, doi: 10.1039/C8NR08375D. DOI: https://doi.org/10.1039/C8NR08375D

A. Nastulyavichus et al., “Antibacterial coatings of Se and Si nanoparticles,” Appl. Surf. Sci., vol. 469, pp. 220–225, Mar. 2019, doi: 10.1016/J.APSUSC.2018.11.011. DOI: https://doi.org/10.1016/j.apsusc.2018.11.011

S. Tavakoli, S. Nemati, M. Kharaziha, and S. Akbari-Alavijeh, “Embedding CuO Nanoparticles in PDMS-SiO2 Coating to Improve Antibacterial Characteristic and Corrosion Resistance,” Colloid Interface Sci. Commun., vol. 28, pp. 20–28, Jan. 2019, doi: 10.1016/J.COLCOM.2018.11.002. DOI: https://doi.org/10.1016/j.colcom.2018.11.002

W. Park, Y. J. Heo, and D. K. Han, “New opportunities for nanoparticles in cancer immunotherapy,” Biomater. Res., vol. 22, no. 1, p. e27614, Sep. 2018, doi: 10.1186/S40824-018-0133-Y/FIGURES/5. DOI: https://doi.org/10.1186/s40824-018-0133-y

K. Orthaber, M. Pristovnik, K. Skok, B. Perić, and U. Maver, “Skin Cancer and Its Treatment: Novel Treatment Approaches with Emphasis on Nanotechnology,” J. Nanomater., vol. 2017, 2017, doi: 10.1155/2017/2606271. DOI: https://doi.org/10.1155/2017/2606271

Y. Zheng, Z. Li, H. Chen, and Y. Gao, “Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy,” Eur. J. Pharm. Sci., vol. 144, p. 105213, Mar. 2020, doi: 10.1016/J.EJPS.2020.105213. DOI: https://doi.org/10.1016/j.ejps.2020.105213

M. A. Safwat, G. M. Soliman, D. Sayed, and M. A. Attia, “Fluorouracil-Loaded Gold Nanoparticles for the Treatment of Skin Cancer: Development, in Vitro Characterization, and in Vivo Evaluation in a Mouse Skin Cancer Xenograft Model,” Mol. Pharm., vol. 15, no. 6, pp. 2194–2205, Jun. 2018, doi: 10.1021/ACS.MOLPHARMACEUT.8B00047/ASSET/IMAGES/ACS.MOLPHARMACEUT.8B00047.SOCIAL.JPEG_V03. DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00047

L. Schoenmaker et al., “mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability,” Int. J. Pharm., vol. 601, p. 120586, May 2021, doi: 10.1016/J.IJPHARM.2021.120586. DOI: https://doi.org/10.1016/j.ijpharm.2021.120586

R. Tenchov, R. Bird, A. E. Curtze, and Q. Zhou, “Lipid Nanoparticles from Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement,” ACS Nano, vol. 15, no. 11, pp. 16982–17015, Nov. 2021, doi: 10.1021/ACSNANO.1C04996/SUPPL_FILE/NN1C04996_SI_001.PDF. DOI: https://doi.org/10.1021/acsnano.1c04996

R. Vázquez-Muñoz, A. Huerta-Saquero, R. Vázquez-Muñoz, and A. Huerta-Saquero, “Toxicidad de los nanomateriales de interés biomédico en los sistemas biológicos,” Mundo nano. Rev. Interdiscip. en nanociencias y nanotecnología, vol. 11, no. 20, pp. 65–75, Jun. 2018, doi: 10.22201/CEIICH.24485691E.2018.20.62715. DOI: https://doi.org/10.22201/ceiich.24485691e.2018.20.62715

A. Aghebati-Maleki et al., “Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers,” J. Cell. Physiol., vol. 235, no. 3, pp. 1962–1972, Mar. 2020, doi: 10.1002/JCP.29126. DOI: https://doi.org/10.1002/jcp.29126

D. J. Irvine and E. L. Dane, “Enhancing cancer immunotherapy with nanomedicine,” Nat. Rev. Immunol. 2020 205, vol. 20, no. 5, pp. 321–334, Jan. 2020, doi: 10.1038/s41577-019-0269-6. DOI: https://doi.org/10.1038/s41577-019-0269-6

A. Farzin, S. A. Etesami, J. Quint, A. Memic, and A. Tamayol, “Magnetic Nanoparticles in Cancer Therapy and Diagnosis,” Adv. Healthc. Mater., vol. 9, no. 9, p. 1901058, May 2020, doi: 10.1002/ADHM.201901058. DOI: https://doi.org/10.1002/adhm.201901058

W. Xue et al., “AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer,” J. Mater. Chem. B, vol. 6, no. 15, pp. 2289–2303, Apr. 2018, doi: 10.1039/C7TB03206D. DOI: https://doi.org/10.1039/C7TB03206D

X. Li et al., “Enhanced tumor targeting effects of a novel paclitaxel-loaded polymer: PEG-PCCL-modified magnetic iron oxide nanoparticles,” Drug Deliv., vol. 24, no. 1, pp. 1284–1294, 2017, doi: 10.1080/10717544.2017.1373167. DOI: https://doi.org/10.1080/10717544.2017.1373167

S. Zanganeh et al., “Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues,” Nat. Nanotechnol. 2016 1111, vol. 11, no. 11, pp. 986–994, Sep. 2016, doi: 10.1038/nnano.2016.168. DOI: https://doi.org/10.1038/nnano.2016.168

F. Soetaert, P. Korangath, D. Serantes, S. Fiering, and R. Ivkov, “Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies,” Adv. Drug Deliv. Rev., vol. 163–164, pp. 65–83, Jan. 2020, doi: 10.1016/J.ADDR.2020.06.025. DOI: https://doi.org/10.1016/j.addr.2020.06.025

J. Beik et al., “Gold nanoparticles in combinatorial cancer therapy strategies,” Coord. Chem. Rev., vol. 387, pp. 299–324, May 2019, doi: 10.1016/J.CCR.2019.02.025. DOI: https://doi.org/10.1016/j.ccr.2019.02.025

D. Zhang, X. Qin, T. Wu, Q. Qiao, Q. Song, and Z. Zhang, “Extracellular vesicles based self-grown gold nanopopcorn for combinatorial chemo-photothermal therapy,” Biomaterials, vol. 197, pp. 220–228, Mar. 2019, doi: 10.1016/J.BIOMATERIALS.2019.01.024. DOI: https://doi.org/10.1016/j.biomaterials.2019.01.024

J. B. Vines, J. H. Yoon, N. E. Ryu, D. J. Lim, and H. Park, “Gold nanoparticles for photothermal cancer therapy,” Front. Chem., vol. 7, no. APR, p. 167, 2019, doi: 10.3389/FCHEM.2019.00167/BIBTEX. DOI: https://doi.org/10.3389/fchem.2019.00167

R. Ahmad, J. Fu, N. He, and S. Li, “Advanced gold nanomaterials for photothermal therapy of cancer,” J. Nanosci. Nanotechnol., vol. 16, no. 1, pp. 67–80, Jan. 2016, doi: 10.1166/JNN.2016.10770. DOI: https://doi.org/10.1166/jnn.2016.10770

H. R. Hong, J. Kim, and C. H. Park, “Facile fabrication of multifunctional fabrics: use of copper and silver nanoparticles for antibacterial, superhydrophobic, conductive fabrics,” RSC Adv., vol. 8, no. 73, pp. 41782–41794, Dec. 2018, doi: 10.1039/C8RA08310J. DOI: https://doi.org/10.1039/C8RA08310J

A. Kumar, K. Nath, Y. Parekh, M. G. Enayathullah, K. K. Bokara, and A. Sinhamahapatra, “Antimicrobial silver nanoparticle-photodeposited fabrics for SARS-CoV-2 destruction,” Colloid Interface Sci. Commun., vol. 45, p. 100542, Nov. 2021, doi: 10.1016/J.COLCOM.2021.100542. DOI: https://doi.org/10.1016/j.colcom.2021.100542

S. Talebi and M. Montazer, “Denim Fabric with Flame retardant, hydrophilic and self-cleaning properties conferring by in-situ synthesis of silica nanoparticles,” Cellul. 2020 2711, vol. 27, no. 11, pp. 6643–6661, May 2020, doi: 10.1007/S10570-020-03195-6. DOI: https://doi.org/10.1007/s10570-020-03195-6

J. R. Xavier, “Electrochemical and dynamic mechanical properties of polyurethane nanocomposite reinforced with functionalized TiO2–ZrO2 nanoparticles in automobile industry,” Appl. Nanosci. 2022, pp. 1–16, Feb. 2022, doi: 10.1007/S13204-022-02393-X. DOI: https://doi.org/10.1007/s13204-022-02393-x

W. J. Li and M. Y. Wey, “Dual immobilization of PdCu nanoparticles on halloysite nanotubes by CTAB and PVP for automobile exhaust elimination,” Appl. Clay Sci., vol. 214, p. 106299, Nov. 2021, doi: 10.1016/J.CLAY.2021.106299. DOI: https://doi.org/10.1016/j.clay.2021.106299

M. Qasim, M. Sajid Kamran, M. Ammar, M. Ali Jamal, and M. Yasar Javaid, “Heat Transfer Enhancement of an Automobile Engine Radiator using ZnO Water Base Nanofluids,” J. Therm. Sci. 2020 294, vol. 29, no. 4, pp. 1010–1024, Apr. 2020, doi: 10.1007/S11630-020-1263-9. DOI: https://doi.org/10.1007/s11630-020-1263-9

M. A. Mujtaba et al., “Comparative study of nanoparticles and alcoholic fuel additives-biodiesel-diesel blend for performance and emission improvements,” Fuel, vol. 279, p. 118434, Nov. 2020, doi: 10.1016/J.FUEL.2020.118434. DOI: https://doi.org/10.1016/j.fuel.2020.118434

M. S. Haydar, S. Ghosh, and P. Mandal, “Application of Iron Oxide Nanoparticles as Micronutrient Fertilizer in Mulberry Propagation,” J. Plant Growth Regul. 2021, pp. 1–21, Jun. 2021, doi: 10.1007/S00344-021-10413-3. DOI: https://doi.org/10.1007/s00344-021-10413-3

Y. Wang, Y. Lin, Y. Xu, Y. Yin, H. Guo, and W. Du, “Divergence in response of lettuce (var. ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer,” https://doi.org/10.1080/26395940.2019.1578187, vol. 31, no. 1, pp. 80–84, Jan. 2019, doi: 10.1080/26395940.2019.1578187. DOI: https://doi.org/10.1080/26395940.2019.1578187

A. Bahrami, R. Delshadi, S. M. Jafari, and L. Williams, “Nanoencapsulated nisin: An engineered natural antimicrobial system for the food industry,” Trends Food Sci. Technol., vol. 94, pp. 20–31, Dec. 2019, doi: 10.1016/J.TIFS.2019.10.002. DOI: https://doi.org/10.1016/j.tifs.2019.10.002

M. V. Nikolic, Z. Z. Vasiljevic, S. Auger, and J. Vidic, “Metal oxide nanoparticles for safe active and intelligent food packaging,” Trends Food Sci. Technol., vol. 116, pp. 655–668, Oct. 2021, doi: 10.1016/J.TIFS.2021.08.019. DOI: https://doi.org/10.1016/j.tifs.2021.08.019

A. B. Sengul and E. Asmatulu, “Toxicity of metal and metal oxide nanoparticles: a review,” Environ. Chem. Lett. 2020 185, vol. 18, no. 5, pp. 1659–1683, Jun. 2020, doi: 10.1007/S10311-020-01033-6. DOI: https://doi.org/10.1007/s10311-020-01033-6

C. Lopez-Chaves, J. Soto-Alvaredo, M. Montes-Bayon, J. Bettmer, J. Llopis, and C. Sanchez-Gonzalez, “Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies,” Nanomedicine Nanotechnology, Biol. Med., vol. 14, no. 1, pp. 1–12, Jan. 2018, doi: 10.1016/J.NANO.2017.08.011. DOI: https://doi.org/10.1016/j.nano.2017.08.011

A. Sani, C. Cao, and D. Cui, “Toxicity of gold nanoparticles (AuNPs): A review,” Biochem. Biophys. Reports, vol. 26, p. 100991, Jul. 2021, doi: 10.1016/J.BBREP.2021.100991. DOI: https://doi.org/10.1016/j.bbrep.2021.100991

C. S. Yah, “The toxicity of gold nanoparticles in relation to their physiochemical properties,” Biomed. Res., vol. 24, no. 3, pp. 400–413, 2013.

S. S. Salem and A. Fouda, “Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview,” Biol. Trace Elem. Res., vol. 199, no. 1, pp. 344–370, Jan. 2021, doi: 10.1007/S12011-020-02138-3/FIGURES/5. DOI: https://doi.org/10.1007/s12011-020-02138-3

Membrana

Publicado

2022-06-10

Cómo citar

Britto Hurtado, R., Cortez-Valadez, M., & Flores- Acosta, M. (2022). Aplicaciones tecnológicas de las nanopartículas en la medicina e industria. EPISTEMUS, 16(33), 46–54. https://doi.org/10.36790/epistemus.v16i33.223

Número

Sección

Ciencia, Tecnología y Sociedad

Métrica

Artículos similares

1 2 3 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.