Formation of Protostellar Clusters’ Computational Model

an application to ‘the Brick’.

Authors

DOI:

https://doi.org/10.36790/epistemus.v16i33.225

Keywords:

astrophysics, computation, simulations, protostars

Abstract

In the present work, we show results of a numerical simulation project aimed to study the formation process of the interstellar cloud known as “the Brick”. This cloud is located near the Milky Way center. The simulated formation process is based on the collision of two gas sub-clouds that are contained within a larger progenitor cloud. A fundamental characteristic is that the simulated gas shows turbulent velocities. The results of several simulations that well represent some cases of academic interest are studied besides the case of the cloud “the Brick”. In addition, we calculate the physical properties of the groups of proto- star resulting from such models. Due to the obtained mass, these groups can be identified as protostellar clusters.

Downloads

Download data is not yet available.

References

P. H. Bodenheimer, Principles of star formation, Springer-Verlag, 2011. DOI: https://doi.org/10.1007/978-3-642-15063-0

A. Rimmer, “The very hungry Universe”, Astronomy, June 2022. https://astronomy.com/issues/2022/june-2022.

V. Springel, “The cosmological simulation code GADGET-2”, Monthly Notices of the Royal Astronomical Society,Vol. 364, pp.1105, 2005. DOI: https://doi.org/10.1111/j.1365-2966.2005.09655.x

G. Arreaga-Garcia, “The effects on a core collapse of the changes in the number and size of turbulent modes of velocity”, Revista Mexicana de Astronomia y Astrofisica, Vol. 53, Num.2, pp.361-384. 2017.

R.I. Yamada, Y. Fukui, H. Sano, K. Tachihara, J.H. Bieging, R. Enokiya, A. Nishimura, S. Fujita, M. Kohno y K. Tsuge, arXiv:2106.01852, 2021.

E. Roslowsky, G. Engargiola, R. Plambeck and L. Blitz, “Giant molecular clouds in M33. High resolution observations”, The Astrophysical Journal, vol. 599, pp.258-274, 2003. DOI: https://doi.org/10.1086/379166

A. Bolatto, A.Leroy, E. Roslowsky, F. Walter and L. Blitz, “The resolved properties of extragalactic giant molecular clouds”, The Astrophysical Journal, vol. 686, pp.948-965, 2008. DOI: https://doi.org/10.1086/591513

Longmore, S.N., Rathborne, J., Bastian, N., Alves, J., Ascenso, J., Bally, J., Testi, L., Longmore, A., Battersby, C., Bressert, E., Purcell, C., Walsh, A., Jackson, J., Foster, J., Molinari, S., Meingast, S., Amorim, A., Lima, J., Marques, R., Moitinho, A., Pinhao, J., J. Rebordao, J. and Santos, F.D., “G0.253+0.016: a molecular cloud progenitor of an Arches-like cluster” , The Astrophysical Journal, vol. 746, pp.117-127, 2012. DOI: https://doi.org/10.1088/0004-637X/746/2/117

C.J. Clarke y R.F.Carswell, Principles of astrophysical fluids dynamics, Cambridge, 2009.

C. Federrath, “The turbulent formation of stars”, Physics Today, vol. 71, Num. 6, pp.38-42, 2018. DOI: https://doi.org/10.1063/PT.3.3947

M. R. Krumholz, “New theory of star formation”, Astronomy, February 2008,

https://astronomy.com/news/2008/02/new-theory-of-star-formation

D.Utomo, L.Blitz y E. Falgarone,”The origin of interstellar turbulence in M33“, The Astrophysical Journal, 87117, 2019. DOI: https://doi.org/10.3847/1538-4357/aaf582

vector

Published

2022-11-24

How to Cite

Arreaga Garcia, G. (2022). Formation of Protostellar Clusters’ Computational Model: an application to ‘the Brick’ . EPISTEMUS, 16(33), 39–45. https://doi.org/10.36790/epistemus.v16i33.225

Issue

Section

From the academy

Metrics