La miel de abejas sin aguijón: una medicina diferente

Autores/as

DOI:

https://doi.org/10.36790/epistemus.v17i34.242

Palabras clave:

Abejas sin aguijón, Miel, Enfermedades

Resumen

Los principales polinizadores de la flora silvestre son las abejas sin aguijón y los productos del nido como el polen recolectado, el propóleo y principalmente la miel; han sido empleados en la dieta diaria y aún mejor en la medicina tradicional. Empleando palabras clave como: actividad antimicrobiana, antioxidante, antibacteriana y anticancerígena se realizó una búsqueda bibliográfica en libros y artículos de investigación de los buscadores científicos PubMed, World Wide Science, Google Scholar y Springer Link, para describir aspectos generales y ejemplos de los beneficios en la salud de la miel. Estudios in vitro e in vivo han demostrado una relación positiva entre las características fisicoquímicas y la composición fitoquímica de la miel con el efecto benéfico en el tratamiento de afecciones leves como cicatrización de heridas, hasta procesos complejos de inflamación, estrés oxidativo, o infecciones microbianas. Así, la miel de abejas sin aguijón representa un producto con potencial terapéutico.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

S. R. Ramírez, J. C. Nieh, T. B. Quental, D. W. Roubik, V. L. Imperatriz-Fonseca, and N. E. Pierce, “A molecular phylogeny of the stingless bee genus Melipona (Hymenoptera: Apidae),” Molecular Phylogenetics and Evolution, vol. 56, no. 2, pp. 519–525, Aug. 2010, doi: 10.1016/J.YMPEV.2010.04.026. DOI: https://doi.org/10.1016/j.ympev.2010.04.026

N. Arnold, R. Zepeda, M. A. Vásquez, and E. M. Aldasoro, Las abejas sin aguijón y su cultivo en Oaxaca, México: con catálogo de especies, 1st ed., vol. 1. San Cristóbal de Las Casas, Chiapas, México: ECOSUR, CONABIO, Rémy Benoit Marie Vandame, 2018.

A. C. INANA, “Abejas Nativas | Inana A.C.,” 2020. https://www.inana-ac.org/abejas-nativas

M. Hurtado-Burillo, P. de la Rúa Tarín, and C. Ruíz, “Caracterización molecular y morfométrica del género scaptotrigona (apidae: meliponini) en mesoamérica,” Universidad de Murcia, Murcia, 2015.

K. Hartfelder, “Catalogue of the bees (Hymenoptera, Apoidea) in the Neotropical Region,” Apidologie, vol. 39, no. 4, pp. 387–387, Jul. 2008, doi: 10.1051/APIDO:2008033. DOI: https://doi.org/10.1051/apido:2008033

K. Amano, T. Nemoto, and T. A. Heard, “What are Stingless Bees, and Why and How to Use Them as Crop Pollinators? ― a Review ―,” Japan Agriculture Research Quartly, vol. 34, no. 3, pp. 183–190, 2000.

D. C. Fernández, G. Zambrano, and V. Gonzalez, “Comportamiento de nidificación, notas taxonómicas y distribución potencial de Paratrigona eutaeniata (Hymenoptera: Apidae, Meliponini),” Revista Colombiana de Entomología, vol. 36, no. 2, 2010, Available: https://journaldatabase.info/articles/comportamiento_nidificacion_notas.html DOI: https://doi.org/10.25100/socolen.v36i2.9167

D. W. Roubik, “Stingless bee nesting biology,” Apidologie, vol. 37, no. 2, pp. 124–143, 2006. DOI: https://doi.org/10.1051/apido:2006026

L. Baquero and G. Stamatti, Cría y Manejo de Abejas sin Aguijón. Tucumán, Argentina: Ediciones Del Subtrópico, ProYungas, 2007.

M. G. Guaita-Gavilanes, S. Martin-Solano, and J. W. Ron Román, “Determinación de la presencia y caracterización molecular de Nosema sp. mediante PCR dúplex en abejas sin aguijón (Hymenoptera: Meliponini) de las provincias de Orellana y Loja – Ecuador,” ESPE, Sangolquí, 2019. Accessed: Available: http://repositorio.espe.edu.ec/jspui/handle/21000/21219

P. L. Ruiz-Calderón, A. Koch, and J. W. Ron-Román, “Caracterización fisicoquímica y microbiológica de miel de la tribu Meliponini en la provincia de Orellana-Ecuador,” ESPE, Sangolquí, 2019. Accessed: Available: http://repositorio.espe.edu.ec/jspui/handle/21000/20824

P. Franck, E. Cameron, G. Good, J. Y. Rasplus, and B. P. Oldroyd, “Nest architecture and genetic differentiation in a species complex of Australian stingless bees,” Molecular Ecology, vol. 13, no. 8, pp. 2317–2331, Aug. 2004, doi: 10.1111/J.1365-294X.2004.02236.X. DOI: https://doi.org/10.1111/j.1365-294X.2004.02236.x

T. A. Heard, “The role of stingless bees in crop pollination,” Annual Review Entomology, vol. 44, pp. 183–206, Nov. 2003, doi: 10.1146/ANNUREV.ENTO.44.1.183. DOI: https://doi.org/10.1146/annurev.ento.44.1.183

B. J. Brosi, “The complex responses of social stingless bees (Apidae: Meliponini) to tropical deforestation,” For Ecology Manage, vol. 258, no. 9, pp. 1830–1837, Oct. 2009, doi: 10.1016/J.FORECO.2009.02.025. DOI: https://doi.org/10.1016/j.foreco.2009.02.025

G. A. Asiko, “Pollination of strawberry in Kenya, by stingless bees (Hymenoptera: meliponini) and honey bee (hymenoptera: apini) for improved fruit quality,” University of Nairobi, Netherlands, 2012. Available: http://erepository.uonbi.ac.ke/handle/11295/6859

A. G. Dyer et al., “Innate colour preferences of the Australian native stingless bee Tetragonula carbonaria Sm.,” Journal of Comparative Physiology A 2016 202:9, vol. 202, no. 9, pp. 603–613, Jun. 2016, doi: 10.1007/S00359-016-1101-4. DOI: https://doi.org/10.1007/s00359-016-1101-4

T. Eltz, “Tracing Pollinator Footprints on Natural Flowers,” Journal of Chemical Ecology 2006 32:5, vol. 32, no. 5, pp. 907–915, May 2006, doi: 10.1007/S10886-006-9055-6. DOI: https://doi.org/10.1007/s10886-006-9055-6

H. F. Schwarz, “Stingless Bees (Meliponidae) of the Western Hemisphere. Lestrimelitta and the Following Subgenera of Trigona, Paratrigona, Swarziana, Parapartamona, Cephalotrigona, Oxytrigona, Scaura, and Mourella. Abejas Jicotes (Meliponidae) Del Hemisferio Occidental.,” Bulletin of the American Museum of Natural History, vol. 90, pp. 1–536, 1948.

Paulo. Nogueira Neto, Vida e criação de abelhas indígenas sem ferrão. Republica Federativa do Brasil: Edição Nogueirapis, 1997.

M. P. Porrini et al., “Nosema ceranae in South American Native Stingless Bees and Social Wasp,” Microbiology Ecology, vol. 74, no. 4, pp. 761–764, Nov. 2017, doi: 10.1007/S00248-017-0975-1. DOI: https://doi.org/10.1007/s00248-017-0975-1

J. O. Macías-Macías et al., “Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana,” Scientific Reports 2020 10:1, vol. 10, no. 1, pp. 1–8, Oct. 2020, doi: 10.1038/s41598-020-74209-3. DOI: https://doi.org/10.1038/s41598-020-74209-3

D. W. Roubik and F. J. Peralta, “Thermodynamics in nests of two Melipona species in Brasil,” Acta Amazonic, vol. 13, no. 2, pp. 453–466, Apr. 1983. DOI: https://doi.org/10.1590/1809-43921983132453

A. Syafrizal, D. Sila, and M. Bratawinata, “Diversity of kelulut bee (Trigona spp.) in Lempake education forest,” Mulawarman Scientifie, vol. 11, 2012,. Available: https://www.researchgate.net/publication/285320739

P. V. Rao, K. T. Krishnan, N. Salleh, and S. H. Gan, “Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review,” Revista Brasileira de Farmacognosia, vol. 26, no. 5, pp. 657–664, Sep. 2016, doi: 10.1016/J.BJP.2016.01.012. DOI: https://doi.org/10.1016/j.bjp.2016.01.012

M. L. F. Bittencourt, P. R. Ribeiro, R. L. P. Franco, H. W. M. Hilhorst, R. D. de Castro, and L. G. Fernandez, “Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis: Use of correlation and multivariate analyses to identify potential bioactive compounds,” Food Research International, vol. 76, pp. 449–457, Oct. 2015, doi: 10.1016/J.FOODRES.2015.07.008. DOI: https://doi.org/10.1016/j.foodres.2015.07.008

F. C. Lavinas et al., “Brazilian stingless bee propolis and geopropolis: promising sources of biologically active compounds,” Revista Brasileira de Farmacognosia, vol. 29, no. 3, pp. 389–399, Aug. 2019, doi: 10.1016/J.BJP.2018.11.007. DOI: https://doi.org/10.1016/j.bjp.2018.11.007

A. Gela, Z. A. Hora, D. Kebebe, and A. Gebresilassie, “Physico-chemical characteristics of honey produced by stingless bees (Meliponula beccarii) from West Showa zone of Oromia Region, Ethiopia,” Heliyon, vol. 7, no. 1, Jan. 2021, doi: 10.1016/J.HELIYON.2020.E05875. DOI: https://doi.org/10.1016/j.heliyon.2020.e05875

M. Pellerano, R. Marchevsky, E. Camiña, de la Pampa Av Uruguay, and S. Rosa La Pampa Argentina, “Quality of honey from Argentina: Study of chemical composittion and trace elements,” The Journal of the Argentine Chemical Society, vol. 96, no. 2, pp. 33–41, 2008.

J. M. B. de Sousa et al., “Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region,” LWT - Food Science and Technology, vol. 65, pp. 645–651, 2016, doi: 10.1016/J.LWT.2015.08.058. DOI: https://doi.org/10.1016/j.lwt.2015.08.058

T. M. S. Silva et al., “Phenolic compounds, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey,” Journal of Food Composition and Analysis, vol. 29, no. 1, pp. 10–18, Feb. 2013, doi: 10.1016/J.JFCA.2012.08.010. DOI: https://doi.org/10.1016/j.jfca.2012.08.010

M. Jimenez, C. I. Beristain, E. Azuara, M. R. Mendoza, and L. A. Pascual, “Physicochemical and antioxidant properties of honey from Scaptotrigona mexicana bee,” Journal Apiculture Research, vol. 55, no. 2, pp. 151–160, Sep. 2016, doi: 10.1080/00218839.2016.1205294. DOI: https://doi.org/10.1080/00218839.2016.1205294

N. E. F. Esa et al., “A Review on Recent Progress of Stingless Bee Honey and Its Hydrogel-Based Compound for Wound Care Management,” Molecules, vol. 27, no. 10, May 2022, doi: 10.3390/MOLECULES27103080. DOI: https://doi.org/10.3390/molecules27103080

A. Shugaba, “Analysis of Biochemical Composition of Honey Samples from North-East Nigeria,” Biochemistry & Analytical Biochemistry, vol. 2, no. 3, 2012, doi: 10.4172/2161-1009.1000139. DOI: https://doi.org/10.4172/2161-1009.1000139

A. C. V. da Costa, J. M. B. Sousa, M. A. A. P. da Silva, D. dos S. Garruti, and M. S. Madruga, “Sensory and volatile profiles of monofloral honeys produced by native stingless bees of the brazilian semiarid region,” Food Research International, vol. 105, pp. 110–120, Mar. 2018, doi: 10.1016/J.FOODRES.2017.10.043. DOI: https://doi.org/10.1016/j.foodres.2017.10.043

Z. Can, O. Yildiz, H. Sahin, E. Akyuz Turumtay, S. Silici, and S. Kolayli, “An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles,” Food Chemistry, vol. 180, pp. 133–141, Aug. 2015, doi: 10.1016/J.FOODCHEM.2015.02.024. DOI: https://doi.org/10.1016/j.foodchem.2015.02.024

K. Ramanauskiene, A. Stelmakiene, V. Briedis, L. Ivanauskas, and V. Jakštas, “The quantitative analysis of biologically active compounds in Lithuanian honey,” Food Chemistry, vol. 132, no. 3, pp. 1544–1548, Jun. 2012, doi: 10.1016/J.FOODCHEM.2011.12.007. DOI: https://doi.org/10.1016/j.foodchem.2011.12.007

Y. Cardona, A. Torres, and W. Hoffmann, “Colombian stingless bee honeys characterized by multivariate analysis of physicochemical properties,” Apidologie, vol. 50, no. 6, pp. 881–892, Dec. 2019, doi: 10.1007/S13592-019-00698-5/FIGURES/1. DOI: https://doi.org/10.1007/s13592-019-00698-5

F. C. Biluca et al., “Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae),” Journal of Food Composition and Analysis, vol. 63, pp. 89–97, Oct. 2017, doi: 10.1016/J.JFCA.2017.07.039.

S. Shamsudin, J. Selamat, M. Abdul Shomad, M. F. Ab Aziz, and M. J. Haque Akanda, “Antioxidant Properties and Characterization of Heterotrigona itama Honey from Various Botanical Origins according to Their Polyphenol Compounds,” Journal Food Quality, vol. 2022, 2022, doi: 10.1155/2022/2893401. DOI: https://doi.org/10.1155/2022/2893401

A. Zumla and A. Lulat, “Honey--a remedy rediscovered.,” Journal of the Royal Society of Medicine, vol. 82, no. 7, p. 384, 1989, doi: 10.1177/014107688908200704. DOI: https://doi.org/10.1177/014107688908200704

A. J. Tonks, R. A. Cooper, K. P. Jones, S. Blair, J. Parton, and A. Tonks, “Honey stimulates inflammatory cytokine production from monocytes,” Cytokine, vol. 21, no. 5, pp. 242–247, Mar. 2003, doi: 10.1016/S1043-4666(03)00092-9. DOI: https://doi.org/10.1016/S1043-4666(03)00092-9

B. Medhi, A. Puri, S. Upadhyay, and L. Kaman, “Topical Application of Honey in The Treatment of Wound Healing: A Metaanalysis,” JK SCIENCE, vol. 10, no. 4, pp. 166–169, 2008.

N. S. Al-Waili, K. Salom, and A. A. Al-Ghamdi, “Honey for Wound Healing, Ulcers, and Burns; Data Supporting Its Use in Clinical Practice,” The Scientific World Journal, vol. 11, p. 766, Apr. 2011, doi: 10.1100/TSW.2011.78. DOI: https://doi.org/10.1100/tsw.2011.78

M. Yaacob, N. F. Rajab, S. Shahar, and R. Sharif, “Stingless bee honey and its potential value: A systematic review,” Food Research, vol. 2, no. 2, pp. 124–133, Apr. 2018, doi: 10.26656/FR.2017.2(2).212. DOI: https://doi.org/10.26656/fr.2017.2(2).212

G. R. O. Rosales, “Medicinal uses of melipona beecheii honey, by the ancient maya,” in Pot-Honey: A Legacy of Stingless Bees, vol. 9781461449607, P. Vit, S. Pedro, and D. Roubik, Eds. New York: Springer New York, 2013, pp. 229–240. doi: 10.1007/978-1-4614-4960-7_15/COVER. DOI: https://doi.org/10.1007/978-1-4614-4960-7_15

O. O. Erejuwa, S. A. Sulaiman, and M. S. Ab Wahab, “Honey: A Novel Antioxidant,” Molecules, vol. 17, no. 4, p. 4400, Apr. 2012, doi: 10.3390/MOLECULES17044400.

I. E. Haffejee and A. Moosa, “Honey in the treatment of infantile gastroenteritis,” British Medical Journal (Clinical research ed), vol. 290, no. 6485, p. 1866, Jun. 1985, doi: 10.1136/BMJ.290.6485.1866. DOI: https://doi.org/10.1136/bmj.290.6485.1866

S. Samarghandian, J. T. Afshari, and S. Davoodi, “Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3,” Clinics, vol. 66, no. 6, pp. 1073–1079, Jun. 2011, doi: 10.1590/S1807-59322011000600026. DOI: https://doi.org/10.1590/S1807-59322011000600026

A. A. Ghashm, N. H. Othman, M. N. Khattak, N. M. Ismail, and R. Saini, “Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines,” BMC Complementary Alternative Medicine, vol. 10, no. 1, pp. 1–8, Sep. 2010, doi: 10.1186/1472-6882-10-49/FIGURES/5. DOI: https://doi.org/10.1186/1472-6882-10-49

O. O. Erejuwa, S. A. Sulaiman, and M. S. Ab Wahab, “Honey: A Novel Antioxidant,” Molecules 2012, Vol. 17, Pages 4400-4423, vol. 17, no. 4, pp. 4400–4423, Apr. 2012, doi: 10.3390/MOLECULES17044400. DOI: https://doi.org/10.3390/molecules17044400

T. C. Pimentel et al., “Stingless bee honey: An overview of health benefits and main market challenges,” Journal Food Biochemistry, vol. 46, no. 3, Mar. 2022, doi: 10.1111/JFBC.13883. DOI: https://doi.org/10.1111/jfbc.13883

L. Chen et al., “Inflammatory responses and inflammation-associated diseases in organs,” Oncotarget, vol. 9, no. 6, p. 7204, Jan. 2018, doi: 10.18632/ONCOTARGET.23208. DOI: https://doi.org/10.18632/oncotarget.23208

J. M. Bennett, G. Reeves, G. E. Billman, and J. P. Sturmberg, “Inflammation-nature’s way to efficiently respond to all types of challenges: Implications for understanding and managing ‘the epidemic’ of chronic diseases,” Frontiers in medicine, vol. 5, no. NOV, p. 316, 2018, doi: 10.3389/FMED.2018.00316/BIBTEX. DOI: https://doi.org/10.3389/fmed.2018.00316

F. C. Biluca et al., “Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae),” Food Research International, vol. 129, p. 108756, Mar. 2020, doi: 10.1016/J.FOODRES.2019.108756. DOI: https://doi.org/10.1016/j.foodres.2019.108756

N. Abdul Malik, M. Mohamed, M. Z. Mustafa, and A. Zainuddin, “In vitro modulation of extracellular matrix genes by stingless bee honey in cellular aging of human dermal fibroblast cells,” Journal Food Biochemistry, vol. 44, no. 1, p. e13098, Jan. 2020, doi: 10.1111/JFBC.13098. DOI: https://doi.org/10.1111/jfbc.13098

A. Nordin et al., “Low dose stingless bee honey increases viability of human dermal fibroblasts that could potentially promote wound healing,” Wound Medicine, vol. 23, pp. 22–27, Dec. 2018, doi: 10.1016/J.WNDM.2018.09.005. DOI: https://doi.org/10.1016/j.wndm.2018.09.005

K. Bashkaran, E. Zunaina, S. Bakiah, S. A. Sulaiman, K. Sirajudeen, and V. Naik, “Anti-inflammatory and antioxidant effects of Tualang honey in alkali injury on the eyes of rabbits: experimental animal study.,” BMC Complementary Alternative Medicine, vol. 11, no. 1, p. 90, Oct. 2011, doi: 10.1186/1472-6882-11-90/COMMENTS. DOI: https://doi.org/10.1186/1472-6882-11-90

P. Vit, “Effect of Stingless bee honey in selenite induced cataracts,” Apiacta, vol. 3, 2002.

A. A. Ilechie, P. K. Kwapong, E. Mate-Kole, S. Kyei, and C. Darko-Takyi, “The efficacy of stingless bee honey for the treatment of bacteria-induced conjunctivitis in guinea pigs,” Journal Experimental Pharmacology, vol. 4, p. 63, May 2012, doi: 10.2147/JEP.S28415. DOI: https://doi.org/10.2147/JEP.S28415

D. M. Borsato et al., “Topical anti-inflammatory activity of a monofloral honey of Mimosa scabrella provided by Melipona marginata during winter in southern Brazil,” Journal Medicnie Food, vol. 17, no. 7, pp. 817–825, Jul. 2014, doi: 10.1089/JMF.2013.0024. DOI: https://doi.org/10.1089/jmf.2013.0024

M. Mittal, M. R. Siddiqui, K. Tran, S. P. Reddy, and A. B. Malik, “Reactive Oxygen Species in Inflammation and Tissue Injury,” Antioxid Redox Signal, vol. 20, no. 7, p. 1126, Mar. 2014, doi: 10.1089/ARS.2012.5149. DOI: https://doi.org/10.1089/ars.2012.5149

K. H. Cheeseman and T. F. Slater, “An introduction to free radical biochemistry,” British Medical Bulletin, vol. 49, no. 3, pp. 481–493, Jan. 1993, doi: 10.1093/OXFORDJOURNALS.BMB.A072625. DOI: https://doi.org/10.1093/oxfordjournals.bmb.a072625

G. Pizzino et al., “Oxidative Stress: Harms and Benefits for Human Health,” Oxidative Medicine and Cellular Longevity, vol. 2017, 2017, doi: 10.1155/2017/8416763. DOI: https://doi.org/10.1155/2017/8416763

F. Shahidi and P. D. Wanasundara, “Phenolic antioxidants,” Critical Reviews in Food Science and Nutrition, vol. 32, no. 1, pp. 67–103, Jan. 1992, doi: 10.1080/10408399209527581. DOI: https://doi.org/10.1080/10408399209527581

M. A. I. Al-Hatamleh, J. C. Boer, K. L. Wilson, M. Plebanski, R. Mohamud, and M. Z. Mustafa, “Antioxidant-Based Medicinal Properties of Stingless Bee Products: Recent Progress and Future Directions,” Biomolecules, vol. 10, no. 6, pp. 1–28, Jun. 2020, doi: 10.3390/BIOM10060923. DOI: https://doi.org/10.3390/biom10060923

C. A. Rice-Evans, N. J. Miller, and G. Paganga, “Antioxidant properties of phenolic compounds,” Trends in Plant Science, vol. 2, no. 4, pp. 152–159, Apr. 1997, doi: 10.1016/S1360-1385(97)01018-2. DOI: https://doi.org/10.1016/S1360-1385(97)01018-2

S. P. Kek, N. L. Chin, Y. A. Yusof, S. W. Tan, and L. S. Chua, “Total Phenolic Contents and Colour Intensity of Malaysian Honeys from the Apis spp. and Trigona spp. Bees,” Agriculture and Agricultural Science Procedia, vol. 2, pp. 150–155, Jan. 2014, doi: 10.1016/J.AASPRO.2014.11.022. DOI: https://doi.org/10.1016/j.aaspro.2014.11.022

F. C. Biluca et al., “Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae),” Journal of Food Composition and Analysis, vol. 63, pp. 89–97, Oct. 2017, doi: 10.1016/J.JFCA.2017.07.039.

P. S. Oliveira, R. C. S. Müller, K. das Graças Fernandes Dantas, C. N. Alves, M. A. M. de Vasconcelos, and G. C. Venturieri, “Ácidos fenólicos, flavonoides e atividade antioxidante em méis de Melipona fasciculata, M. flavolineata (Apidae, Meliponini) E Apis mellifera (Apidae, Apini) da Amazônia,” Quimica Nova, vol. 35, no. 9, pp. 1728–1732, 2012, doi: 10.1590/S0100-40422012000900005. DOI: https://doi.org/10.1590/S0100-40422012000900005

M. Majid, M. S. Ellulu, and M. F. Abu Bakar, “Melissopalynological Study, Phenolic Compounds, and Antioxidant Properties of Heterotrigona itama Honey from Johor, Malaysia,” Scientifica (Cairo), 2020, doi: 10.1155/2020/2529592. DOI: https://doi.org/10.1155/2020/2529592

F. C. Biluca et al., “Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae),” Journal of Food Composition and Analysis, vol. 63, pp. 89–97, Oct. 2017, doi: 10.1016/J.JFCA.2017.07.039. DOI: https://doi.org/10.1016/j.jfca.2017.07.039

H. Hazirah, M. Yasmin-Anum, and A. Norwahidah, “Antioxidant Properties of Stingless Bee Honey and Its Effect on the Viability of Lymphoblastoid Cell Line,” Medicine Health, vol. 14, no. 1, pp. 91–105, Jun. 2019, doi: 10.17576/MH.2019.1401.08. DOI: https://doi.org/10.17576/MH.2019.1401.08

S. B. Budin et al., “Kelulut honey supplementation prevents sperm and testicular oxidative damage in streptozotocin-induced diabetic rats,” Journal Teknolology, vol. 79, no. 3, pp. 89–95, Feb. 2017, doi: 10.11113/JT.V79.9674. DOI: https://doi.org/10.11113/jt.v79.9674

M. S. A. Aziz, N. Giribabu, P. V. Rao, and N. Salleh, “Pancreatoprotective effects of Geniotrigona thoracica stingless bee honey in streptozotocin-nicotinamide-induced male diabetic rats,” Biomedicine & Pharmacotherapy, vol. 89, pp. 135–145, May 2017, doi: 10.1016/J.BIOPHA.2017.02.026. DOI: https://doi.org/10.1016/j.biopha.2017.02.026

N. ‘Ain Arshad, T. S. Lin, and M. F. Yahaya, “Stingless Bee Honey Reduces Anxiety and Improves Memory of the Metabolic Disease-induced Rats,” CNS Neurology Disorders Drug Targets, vol. 19, no. 2, pp. 115–126, Jan. 2020, doi: 10.2174/1871527319666200117105133. DOI: https://doi.org/10.2174/1871527319666200117105133

M. L. R. Bezerra et al., “Effects of honey from Mimosa quadrivalvis L. (malícia) produced by the Melipona subnitida D. (jandaíra) stingless bee on dyslipidaemic rats,” Food Functional, vol. 9, no. 8, pp. 4480–4492, Aug. 2018, doi: 10.1039/C8FO01044G. DOI: https://doi.org/10.1039/C8FO01044G

Agussalim, N. Umami, Nurliyani, and A. Agus, “Stingless bee honey (Tetragonula laeviceps): Chemical composition and their potential roles as an immunomodulator in malnourished rats,” Saudi Journal Biology Science, vol. 29, no. 10, Oct. 2022, doi: 10.1016/J.SJBS.2022.103404. DOI: https://doi.org/10.1016/j.sjbs.2022.103404

P. C. Molan, “The Antibacterial Activity of Honey,” Saudi Journal Biology Science, vol. 73, no. 1, pp. 5–28, 2015, doi: 10.1080/0005772X.1992.11099109. DOI: https://doi.org/10.1080/0005772X.1992.11099109

J. W. White, M. H. Subers, and A. I. Schepartz, “The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system,” Biochimistry Biophysics Acta, vol. 73, no. 1, pp. 57–70, May 1963, doi: 10.1016/0006-3002(63)90359-7. DOI: https://doi.org/10.1016/0926-6569(63)90108-1

J. M. Alvarez-Suarez et al., “Apis mellifera vs Melipona beecheii Cuban polifloral honeys: A comparison based on their physicochemical parameters, chemical composition and biological properties,” LWT Journal, vol. 87, pp. 272–279, Jan. 2018, doi: 10.1016/J.LWT.2017.08.079. DOI: https://doi.org/10.1016/j.lwt.2017.08.079

D. Chan-Rodríguez, J. Ramón-Sierra, J. Lope-Ayora, E. Sauri-Duch, L. Cuevas-Glory, and E. Ortiz-Vázquez, “Antibacterial properties of honey produced by Melipona beecheii and Apis mellifera against foodborn microorganisms,” Food Science and Biotechnology 2012 21:3, vol. 21, no. 3, pp. 905–909, Jun. 2012, doi: 10.1007/S10068-012-0118-X. DOI: https://doi.org/10.1007/s10068-012-0118-x

A. Garedew, E. Schmolz, and I. Lamprecht, “Microcalorimetric investigation on the antimicrobial activity of honey of the stingless bee Trigona spp. and comparison of some parameters with those obtained with standard methods,” Thermochimica Acta, vol. 415, no. 1–2, pp. 99–106, Jun. 2004, doi: 10.1016/J.TCA.2003.06.004. DOI: https://doi.org/10.1016/j.tca.2003.06.004

C. F. Massaro, D. Shelley, T. A. Heard, and P. Brooks, “In vitro antibacterial phenolic extracts from ‘sugarbag’ pot-honeys of australian stingless bees (Tetragonula carbonaria),” Journal Agriculture Food Chemistry, vol. 62, no. 50, pp. 12209–12217, Dec. 2014, doi: 10.1021/JF5051848/SUPPL_FILE/JF5051848_SI_001.PDF. DOI: https://doi.org/10.1021/jf5051848

C. Pucci, C. Martinelli, and G. Ciofani, “Innovative approaches for cancer treatment: current perspectives and new challenges,” Ecancermedicalscience, vol. 13, Sep. 2019, doi: 10.3332/ECANCER.2019.961. DOI: https://doi.org/10.3332/ecancer.2019.961

P. M. Kustiawan, S. Puthong, E. T. Arung, and C. Chanchao, “In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines,” Asian Pacific Journal Tropical Biomedical, vol. 4, no. 7, pp. 549–556, Jul. 2014, doi: 10.12980/APJTB.4.2014APJTB-2013-0039. DOI: https://doi.org/10.12980/APJTB.4.2014APJTB-2013-0039

W. I. W. Ismail, N. N. Hussin, S. N. F. Mazlan, N. H. Hussin, and M. N. F. M. Radzi, “Physicochemical Analysis, Antioxidant and Anti Proliferation Activities of Honey, Propolis and Beebread Harvested from Stingless Bee,” IOP Conference Series: Materials Science and Engineering, vol. 440, no. 1, p. 012048, Oct. 2018, doi: 10.1088/1757-899X/440/1/012048. DOI: https://doi.org/10.1088/1757-899X/440/1/012048

A. K. Zulpa, N. S. Mohd Isa, F. T. Ahmad, M. N. Islamiah, and H. M. Yusof, “Quality Characteristics, Antioxidant and Anticancer Potential of Stingless Bee Honey and Honeybee Honey from Similar Environmental Conditions,” IIUM Medical Journal Malaysia, vol. 20, no. 4, pp. 29–36, Oct. 2021, doi: 10.31436/IMJM.V20I4.1753. DOI: https://doi.org/10.31436/imjm.v20i4.1753

E. T. Arung et al., “Cytotoxicity effect of honey, bee pollen, and propolis from seven stingless bees in some cancer cell lines,” Saudi Journal Biology Science, vol. 28, no. 12, p. 7182, Dec. 2021, doi: 10.1016/J.SJBS.2021.08.017. DOI: https://doi.org/10.1016/j.sjbs.2021.08.017

F. Ahmad, P. Seerangan, M. Z. Mustafa, Z. F. Osman, J. M. Abdullah, and Z. Idris, “Anti-Cancer Properties of Heterotrigona itama sp. Honey Via Induction of Apoptosis in Malignant Glioma Cells,” The Malaysian Journal of Medical Sciences, vol. 26, no. 2, p. 30, 2019, doi: 10.21315/MJMS2019.26.2.4. DOI: https://doi.org/10.21315/mjms2019.26.2.4

L. S. Yazan et al., “Chemopreventive Properties and Toxicity of Kelulut Honey in Sprague Dawley Rats Induced with Azoxymethane,” Biomedicine Research International, vol. 2016, 2016, doi: 10.1155/2016/4036926. DOI: https://doi.org/10.1155/2016/4036926

D. Goulson, E. Nicholls, C. Botías, and E. L. Rotheray, “Bee declines driven by combined stress from parasites, pesticides, and lack of flowers.,” Science, vol. 347, no. 6229, p. 1255957, Mar. 2015, doi: 10.1126/science.1255957. DOI: https://doi.org/10.1126/science.1255957

S. G. Potts, J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W. E. Kunin, “Global pollinator declines: trends, impacts and drivers,” Trends in Ecology & Evolution, vol. 25, no. 6, pp. 345–353, Jun. 2010, doi: 10.1016/J.TREE.2010.01.007. DOI: https://doi.org/10.1016/j.tree.2010.01.007

J. P. González-Varo et al., “Combined effects of global change pressures on animal-mediated pollination,” Trends in Ecology & Evolution, vol. 28, no. 9, pp. 524–530, Sep. 2013, doi: 10.1016/J.TREE.2013.05.008. DOI: https://doi.org/10.1016/j.tree.2013.05.008

B. M. Freitas et al., “Diversity, threats and conservation of native bees in the Neotropics,” Apidologie, vol. 40, no. 3, pp. 332–346, May 2009, doi: 10.1051/apido/2009012. DOI: https://doi.org/10.1051/apido/2009012

A. Reyes-González, R. Ayala, A. Camou-Guerrero, A. Reyes-González, R. Ayala, and A. Camou-Guerrero, “Nuevo registro de abeja sin aguijón del género Plebeia (Apidae: Meliponini), en el alto Balsas del estado de Michoacán, México,” Revista Mexicana Biodiversidad, vol. 88, no. 2, pp. 464–466, Jun. 2017, doi: 10.1016/j.rmb.2017.03.018. DOI: https://doi.org/10.1016/j.rmb.2017.03.018

J. S. Pettis, D. VanEngelsdorp, J. Johnson, and G. Dively, “Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema,” Natur wissenschaften, vol. 99, no. 2, pp. 153–158, Feb. 2012, doi: 10.1007/s00114-011-0881-1. DOI: https://doi.org/10.1007/s00114-011-0881-1

J. Y. Wu, M. D. Smart, C. M. Anelli, and W. S. Sheppard, “Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection,” Journal of Invertebrate Pathology, vol. 109, no. 3, pp. 326–329, Mar. 2012, doi: 10.1016/J.JIP.2012.01.005. DOI: https://doi.org/10.1016/j.jip.2012.01.005

Publicado

2023-02-08

Cómo citar

Hernández-Zavala, A., Guaita Gavilanes, M. G., & Martínez Castillo, M. (2023). La miel de abejas sin aguijón: una medicina diferente. EPISTEMUS, 17(34), 49–59. https://doi.org/10.36790/epistemus.v17i34.242

Número

Sección

Desde la Academia

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 11 12 13 14 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.