PENSAMIENTO COMPUTACIONAL Y APRENDIZAJE ADAPTATIVO EN LA RESOLUCIÓN DE PROBLEMAS CON FRACCIONES

Autores/as

  • Abelardo Mancinas González Tecnológico Nacional de México https://orcid.org/0000-0001-8149-4900
  • Manueal Francisco Montijo Mendoza Tecnológico Nacional de México - ITH

DOI:

https://doi.org/10.36790/epistemus.v15i30.171

Palabras clave:

aprendizaje adaptativo, aprendizaje de fracciones, pensamiento computacional

Resumen

El estudio tiene por objetivo identificar los tipos de pensamiento computacional presentes en la resolución de problemas con fracciones, así como explorar el rol del aprendizaje adaptativo en esta actividad, en niños de cuarto grado de educación básica. El diseño de investigación es de estudio de caso y consistió en la resolución de ejercicios con fracciones por un grupo de estudiantes, a través de una aplicación móvil basada en el aprendizaje adaptativo desarrollada para realizar las pruebas. Los resultados muestran que las modalidades de pensamiento computacional presentes en el test son las de ensayo y error, iteración y recursividad, con una predominancia de esta última. Así mismo, la adaptación de los ejercicios por el sistema, en función de las capacidades individuales de los niños, señala los beneficios que tiene para el aprendizaje de las fracciones el apoyarse en este tipo de tecnología.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

INE, “La educación obligatoria en México”. Instituto Nacional para la Evaluación de la Educación, Ciudad de México, Informe 2019, 2019.

PLANEA, “Evaluación interna 6° grado de educación primaria. Descriptores de niveles de logro”, Secretaría de Educación Pública, México, 2020.

E. Reséndiz y CA. González, “Enseñanza de fracciones en tercer grado de primaria: análisis del discurso y prácticas pedagógicas”, Revista Internacional de Ciencias Sociales y Humanidades, SOCIOTAM, vol. XXVIII, no.1, pp.109-138, enero-junio 2018.

N. Hansen, N. Jordan y J. Rodrigues, “Identifying learning difficulties in fractions: a longitudinal study of student growth from third through sixth grade”, Contemporary Educational Psychology, vol. 50, pp. 45-59, july 2017, doi.org/10.1016/j.cedpsych.2015.11.002

M.N. Istiqomah y S. Prabawanto, “The difficulties of fifth grade students in solving mathematic fractions word problems”, Journal Basic Of Education, vol.03, no.02, pp. 152-160, june 2019,

doi:10.24269/ajbe.v3i2.1835

Secretaría de Educación Pública, Desafíos matemáticos. Cuarto grado. Ciclo escolar 2020-2021, México: SEP, 2020.

M.E. Sánchez, “El desarrollo del pensamiento abstracto en Educación Primaria mediante el uso de la Realidad Aumentada como recurso didáctico”, M.E y TIC. tesis, Universitat Oberta de Catalunya, Membrilla, Ciudad Real, España, 2021, http://hdl.handle.net/10609/133487

C. A. Barbieri, J, Rodrigues, N. Dyson, N.C. Jordan, “Improving fraction understanding in sixth graders with mathematics difficulties: Effects of a number line approach combined with cognitive learning strategies”, Journal of Educational Psychology, vol.112, no.3, pp. 628–648, june 2020, doi.org/10.1037/edu0000384

M. Zapata-Ros, “Pensamiento computacional: Una nueva alfabetización digital”, Revista de Educación a Distancia (RED), no.46, pp. 1-47, septiembre 2015, https://doi:10.6018/red/46/4

J. Sjaastad y C. Tømte, “Adaptive Learning Systems in Mathematics Classrooms”, en Education Research Highlights in Mathematics, Science and Technology. Iowa: ISRES, 2018, pp. 30–46.

M. Guzdial, A. Kay, C. Norris y E. Soloway, “Computational thinking should just be good thinking”, Communications of the ACM, vol. 62, no. 11, pp. 28-30, november 2019,

doi.org/10.1145/3363181

J. L. Zapotecatl, Introducción al pensamiento computacional: conceptos básicos para todos. México: Academia Mexicana de Computación, 2018.

Kinshuk. (2016). Design adaptative and personalized learning environments. Londres: Routledge.

C. López y L.P. Bedolla, “El aprendizaje adaptativo para la regularización académica de estudiantes de nuevo ingreso: la experiencia en un curso remedial de matemáticas”, Edutec. Revista Electrónica De Tecnología Educativa, no.74, pp. 206-220, diciembre 2020,

doi.org/10.21556/edutec.2020.74.1627

J.C. Levy, Adaptive Learning and the Human Condition. New Jersey: Pearson, 2013.

S. Papert, La máquina de los niños: replantearse la educación en la era de los ordenadores. Barcelona: Paidós Ibérica, 2003

G. Marzano y V. Lubkina, “An adaptive learning model based on a machine learning approach. Information and Communication Technologies”, in Education- Conference on Mechatronics and Robotics, Dubai, February 2020.

A. Mavroudi, M. Giannakos y J. Krogstie, “Supporting adaptive learning pathways through the use of learning analytics: developments, challenges and future opportunities”, Interactive Learning Environments, vol.26, no.2, pp. 206-220 february 2017,

dx.doi.org/10.1080/10494820.2017.1292531

M. Liu, E McKelroy, S.B. Corliss y J. Carrigan, “Investigating the effect of an adaptive learning intervention on students’ learning”, Education Tech Research no. 65, pp.1605–1625, september 2017, doi.org/10.1007/s11423-017-9542-1

J. Fagerlund, P. Häkkinen, M. Vesisenaho y J. Viiri, Jouni, Computational thinking in programming with Scratch in primary schools: A systematic review, en Computer Applications in Engineering Education, Special Issue Article, pp. 2-28 may 2020, doi.org/10.1002/cae.22255

Descargas

Publicado

2021-11-09

Cómo citar

Mancinas González, A., & Montijo Mendoza, M. F. (2021). PENSAMIENTO COMPUTACIONAL Y APRENDIZAJE ADAPTATIVO EN LA RESOLUCIÓN DE PROBLEMAS CON FRACCIONES. EPISTEMUS, 15(30), 12–20. https://doi.org/10.36790/epistemus.v15i30.171

Número

Sección

Investigación

Métrica