El potencial farmacológico de venenos de serpientes de Sonora, México

Autores/as

DOI:

https://doi.org/10.36790/epistemus.v16i33.226

Palabras clave:

Serpientes, Venenos, Farmacología, Biología, Biotecnología

Resumen

Los venenos son mezclas complejas de biomoléculas producidos en glándulas especializadas en diversas plantas o animales. Se ha reportado que los componentes mayoritarios de dichos venenos son péptidos y proteínas; los cuales son principales causantes de los síntomas clínicos derivados de un piquete/mordedura. Adicionalmente, por razones culturales y médicas, las serpientes son, probablemente, los animales venenosos más representativos. Entre estos animales, las serpientes de cascabel son altamente temidas y en muchos casos sus venenos han sido poco estudiados. En el estado de Sonora, México se han descrito 12 especies de serpientes de cascabel, todas consideradas altamente venenosas ya que su mordedura requiere atención médica. En ese sentido, se ha reportado que componentes del veneno de estas especies presentan actividad antibacteriana, anticancerígena, entre otras. En este artículo describimos brevemente que los venenos de algunas serpientes sonorenses contienen prometedores componentes de alta importancia farmacéutica y biotecnológica y por qué deberíamos prestarles atención.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

T. Tasoulis and G. Isbister, “A Review and Database of Snake Venom Proteomes,” Toxins, vol. 9, no. 9, p. 290, Sep. 2017, doi: 10.3390/toxins9090290.

B. Fry, Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery. Oxford University Press, 2015.

L. Fernández-Badillo, I. Zuria, J. J. Sigala-Rodríguez, G. Sanchez-Rojas, and G. Castaneda, “Revisión del conflicto humano-serpiente en México.pdf,” Animal Biodiversity and Conservation, vol. 44, pp. 153–174, May 2021, doi: 10.32800/abc.2021.44.0153.

“THE REPTILE DATABASE.” http://www.reptile-database.org/ (accessed Feb. 19, 2020).

J. C. Rorabaugh and J. A. Lemos-Espinal, A Field Guide to the Amphibians and Reptiles of Sonora, vol. 1. Rodeo, New Mexico: ECO Herpetological Publishing and Distribution, 2016.

J. A. Lemos-Espinal, G. R. Smith, and J. C. Rorabaugh, “A conservation checklist of the amphibians and reptiles of Sonora, Mexico, with updated species lists,” ZK, vol. 829, pp. 131–160, Mar. 2019, doi: 10.3897/zookeys.829.32146.

“OMS - Mordeduras de serpientes venenosas.” https://www.who.int/es/news-room/fact-sheets/detail/snakebite-envenoming (accessed May 23, 2022).

“BoletínEpidemiológico Sistema Nacional de Vigilancia Epidemiológica Sistema Único de Información | Secretaría de Salud | Gobierno | gob.mx.” https://www.gob.mx/salud/documentos/boletinepidemiologico-sistema-nacional-de-vigilancia-epidemiologica-sistema-unico-de-informacion-231750 (accessed Jun. 11, 2020).

A. Alangode, K. Rajan, and B. G. Nair, “Snake antivenom: Challenges and alternate approaches,” Biochemical Pharmacology, vol. 181, p. 114135, Nov. 2020, doi: 10.1016/j.bcp.2020.114135.

M. Sánchez et al., “Toxicological profile of medically relevant Crotalus species from Mexico and their neutralization by a Crotalus basiliscus/Bothrops asper antivenom,” Toxicon, vol. 179, pp. 92–100, May 2020, doi: 10.1016/j.toxicon.2020.03.006.

A. Deshwal, P. Phan, J. Datta, R. Kannan, and S. K. Thallapuranam, “A Meta-Analysis of the Protein Components in Rattlesnake Venom,” Toxins, vol. 13, no. 6, Art. no. 6, Jun. 2021, doi: 10.3390/toxins13060372.

L. A. Calderon et al., “Antitumoral Activity of Snake Venom Proteins: New Trends in Cancer Therapy,” BioMed Research International, vol. 2014, pp. 1–19, 2014, doi: 10.1155/2014/203639.

J. J. Calvete, E. Fasoli, L. Sanz, E. Boschetti, and P. G. Righetti, “Exploring the Venom Proteome of the Western Diamondback Rattlesnake, Crotalus atrox , via Snake Venomics and Combinatorial Peptide Ligand Library Approaches,” J. Proteome Res., vol. 8, no. 6, pp. 3055–3067, Jun. 2009, doi: 10.1021/pr900249q.

Á. Segura et al., “Proteomic, toxicological and immunogenic characterization of Mexican west-coast rattlesnake (Crotalus basiliscus) venom and its immunological relatedness with the venom of Central American rattlesnake (Crotalus simus),” J Proteomics, vol. 158, pp. 62–72, Mar. 2017, doi: 10.1016/j.jprot.2017.02.015.

E. P. Hofmann et al., “Comparative venom-gland transcriptomics and venom proteomics of four Sidewinder Rattlesnake (Crotalus cerastes) lineages reveal little differential expression despite individual variation,” Sci Rep, vol. 8, no. 1, p. 15534, Dec. 2018, doi: 10.1038/s41598-018-33943-5.

R. M. Rautsaw et al., “Intraspecific sequence and gene expression variation contribute little to venom diversity in sidewinder rattlesnakes ( Crotalus cerastes),” Proc Biol Sci, vol. 286, no. 1906, p. 20190810, Jul. 2019, doi: 10.1098/rspb.2019.0810.

M. Borja et al., “Morulustatin, A Disintegrin that Inhibits ADP-Induced Platelet Aggregation, Isolated from the Mexican Tamaulipan Rock Rattlesnake (Crotalus lepidus morulus),” Revista cientifica (Universidad del Zulia. Facultad de Ciencias Veterinarias. Division de Investigacion), vol. 26, no. 2, pp. 86–94, 2016.

“Intra-specific Variation in the Protein Composition and Proteolytic Activity of Venom of Crotalus lepidus morulus from the Northeast of Mexico.” https://bioone.org/journals/copeia/volume-2013/issue-4/OT-13-005/Intra-specific-Variation-in-the-Protein-Composition-and-Proteolytic-Activity/10.1643/OT-13-005.full (accessed May 09, 2022).

J. Jimenez-Canale et al., “Cytotoxic activity of Crotalus molossus molossus snake venom-loaded in chitosan nanoparticles against T-47D breast carcinoma cells,” Acta Biochimica Polonica, vol. 69, no. 1, Art. no. 1, Feb. 2022, doi: 10.18388/abp.2020_5975.

M. Borja et al., “Ontogenetic Change in the Venom of Mexican Black-Tailed Rattlesnakes (Crotalus molossus nigrescens),” Toxins, vol. 10, no. 12, p. 501, Dec. 2018, doi: 10.3390/toxins10120501.

K. K. Tan, S. G. Ler, J. Gunaratne, B. H. Bay, and G. Ponnampalam, “In vitro cytotoxicity of L-amino acid oxidase from the venom of Crotalus mitchellii pyrrhus,” Toxicon, vol. 139, pp. 20–30, Dec. 2017, doi: 10.1016/j.toxicon.2017.09.012.

M. Borja et al., “Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico,” Toxins, vol. 10, no. 1, p. 35, Jan. 2018, doi: 10.3390/toxins10010035.

D. J. Massey et al., “Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona,” Journal of Proteomics, vol. 75, no. 9, pp. 2576–2587, May 2012, doi: 10.1016/j.jprot.2012.02.035.

J. J. Calvete et al., “Snake Venomics of Crotalus tigris: The Minimalist Toxin Arsenal of the Deadliest Neartic Rattlesnake Venom" J Proteome Res, vol. 11, no. 2, pp. 1382–1390, Feb. 2012, doi: 10.1021/pr201021d.

C. M. Adade, S. F. Anne Cristine, O. C. Ana Lúcia, R. B. Zingali, and T. Souto-Padrón, “44. Leishmanicidal Effects of a Phospholipase A2 Isolated from Crotalus viridis viridis Snake Venom,” Toxicon, vol. 60, no. 2, p. 117, Aug. 2012, doi: 10.1016/j.toxicon.2012.04.045.

C. M. Adade, B. L. Cons, P. A. Melo, and T. Souto-Padrón, “Effect of Crotalus viridis viridis snake venom on the ultrastructure and intracellular survival of Trypanosoma cruzi,” Parasitology, vol. 138, no. 1, pp. 46–58, Jan. 2011, doi: 10.1017/S0031182010000958.

A. J. Saviola, A. J. Gandara, R. W. Bryson, and S. P. Mackessy, “Venom phenotypes of the Rock Rattlesnake (Crotalus lepidus) and the Ridge-nosed Rattlesnake (Crotalus willardi) from México and the United States,” Toxicon, vol. 138, pp. 119–129, Nov. 2017, doi: 10.1016/j.toxicon.2017.08.016.

J. Dobson et al., “Rattling the border wall: Pathophysiological implications of functional and proteomic venom variation between Mexican and US subspecies of the desert rattlesnake Crotalus scutulatus,” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol. 205, pp. 62–69, Feb. 2018, doi: 10.1016/j.cbpc.2017.10.008.

E.-R. M. Redwan, “Animal-Derived Pharmaceutical Proteins,” Journal of Immunoassay and Immunochemistry, vol. 30, no. 3, pp. 262–290, Jun. 2009, doi: 10.1080/15321810903084400.

B. Lomonte, Y. Angulo, M. Sasa, and J. M. Gutierrez, “The Phospholipase A2 Homologues of Snake Venoms: Biological Activities and Their Possible Adaptive Roles,” 2009. https://www.ingentaconnect.com/content/ben/ppl/2009/00000016/00000008/art00003 (accessed Mar. 31, 2020).

J. M. Gutiérrez and A. Rucavado, “Snake venom metalloproteinases:Their role in the pathogenesis of local tissue damage,” Biochimie, vol. 82, no. 9, pp. 841–850, Sep. 2000, doi: 10.1016/S0300-9084(00)01163-9.

J. Boldrini-França et al., “Beyond hemostasis: a snake venom serine protease with potassium channel blocking and potential antitumor activities,” Sci Rep, vol. 10, no. 1, p. 4476, Mar. 2020, doi: 10.1038/s41598-020-61258-x.

M. Shibuya et al., “Antimetastatic effect of defibrinogenation with batroxobin depends on the natural killer activity of host in mice,” J Cancer Res Clin Oncol, vol. 116, no. 2, pp. 168–172, Mar. 1990, doi: 10.1007/BF01612672.

S.-M. Suhr and D.-S. Kim, “Identification of the Snake Venom Substance That Induces Apoptosis,” Biochemical and Biophysical Research Communications, vol. 224, no. 1, pp. 134–139, Jul. 1996, doi: 10.1006/bbrc.1996.0996.

L. Lavín de Juan, V. García Recio, P. Jiménez López, T. Girbés Juan, M. Cordoba-Diaz, and D. Cordoba-Diaz, “Pharmaceutical applications of lectins,” Journal of Drug Delivery Science and Technology, vol. 42, pp. 126–133, Dec. 2017, doi: 10.1016/j.jddst.2017.05.018.

S. Sarray, N. Srairi, J. Luis, J. Marvaldi, M. E. Ayeb, and N. Marrakchi, “Lebecetin, a C-Lectin Protein from the Venom of Macrovipera lebetina That Inhibits Platelet Aggregation and Adhesion of Cancerous Cells,” PHT, vol. 31, no. 3–6, pp. 173–176, 2001, doi: 10.1159/000048060.

E. Rivas Mercado et al., “Disintegrins extracted from totonacan rattlesnake (Crotalus totonacus) venom and their anti-adhesive and anti-migration effects on MDA-MB-231 and HMEC-1 cells,” Toxicology in Vitro, vol. 65, p. 104809, Jun. 2020, doi: 10.1016/j.tiv.2020.104809.

B. Akhtar, F. Muhammad, A. Sharif, and M. I. Anwar, “Mechanistic insights of snake venom disintegrins in cancer treatment,” European Journal of Pharmacology, vol. 899, p. 174022, May 2021, doi: 10.1016/j.ejphar.2021.174022.

K. J. McClellan and K. L. Goa, “Tirofiban,” Drugs, vol. 56, no. 6, pp. 1067–1080, Dec. 1998, doi: 10.2165/00003495-199856060-00017.

R. M. Scarborough, “Development of eptifibatide,” American Heart Journal, vol. 138, no. 6, pp. 1093–1104, Dec. 1999, doi: 10.1016/S0002-8703(99)70075-X.

E. E. N. Castro et al., “Serpientes Venenosas en México: Una Revisión al Estudio de los Venenos, los Antivenenos y la Epidemiología," Revista Latinoamericana de Herpetología, vol. 3, no. 2, Art. no. 2, Nov. 2020, doi: 10.22201/fc.25942158e.2020.2.205.

T. Mohamed Abd El-Aziz, A. G. Soares, and J. D. Stockand, “Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving,” Toxins, vol. 11, no. 10, Art. no. 10, Oct. 2019, doi: 10.3390/toxins11100564.

serpiente

Descargas

Publicado

2022-11-24

Cómo citar

Jimenez Canale, J., Velazquez Contreras, E. F., & Sarabia Sainz, A.- i. (2022). El potencial farmacológico de venenos de serpientes de Sonora, México. EPISTEMUS, 16(33). https://doi.org/10.36790/epistemus.v16i33.226

Número

Sección

Ciencia, Tecnología y Sociedad