Enhancement of Electromagnetic Fields Under Surface Plasmon
DOI:
https://doi.org/10.36790/epistemus.v16i32.172Keywords:
Surface Plasmon, field enhancement, Kretschmann geometryAbstract
In this paper, the concept of surface plasmons and their applications are explained in a general way. In addition, it is shown that the Kretschmann geometry consisting of glass-metal-vacuum is one of the usually used to excite the electromagnetic field under the plasmon, because naturally on a flat surface it is not possible to get this effect, except for some particular cases of the incident source or beams combination. Also, the intensity or amplification of the field as a function of position is quantified and an important property of amplification is observed under the plasmon condition, in which the intensity of the field decays exponentially when moving away from the metal-vacuum interface. As well, is also made of research areas related to surface plasmons.
Downloads
References
A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Physik, vol. 216, pp. 398-410, Julio 1968. DOI: https://doi.org/10.1007/BF01391532
E. Kretschmann, “Determination of the Optical Constants of Metals by Excitation of Surface Plasmons,” Z. Physik, vol. 241, pp. 313-321, Agosto 1971. DOI: https://doi.org/10.1007/BF01395428
W. H. Weber and G. W. Ford “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation,” Opt. Lett. vol. 6, pp. 122-124, Marzo 1981. DOI: https://doi.org/10.1364/OL.6.000122
D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films,” Phys. Rev. Lett. vol. 47, pp. 1927-1930, Agosto 1981. DOI: https://doi.org/10.1103/PhysRevLett.47.1927
M. Born and E. Wolf, Principles of Optics, 6ta ed. New York, Pergamon Press, 1987.
D. Sarid, R. T. Deck, A. E. Craig, R. K. Hickernell, R. S. Jameson, and J. J. Fasano, “Optical field enhancement by long-range surface-plasma waves,” Appl. Opt. vol. 21, pp. 3993-3995, Noviembre 1982. DOI: https://doi.org/10.1364/AO.21.003993
J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev.B,vol. 73, 035407, Enero 2006. DOI: https://doi.org/10.1103/PhysRevB.73.035407
X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” Adv. Res. vol. 1, pp. 13-28, Enero 2010. DOI: https://doi.org/10.1016/j.jare.2010.02.002
Stefano Mariani and Maria Minunni, “Surface plasmon resonance applications in clinical analysis,” Anal. Bioanal. Chem. Vol. 406, pp. 2303-2323, Abril 2014. DOI: https://doi.org/10.1007/s00216-014-7647-5
Masson and Jean Francois, “Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics,” Am. Chem. Soc. Vol. 2, pp. 16-30, Enero 2017. DOI: https://doi.org/10.1021/acssensors.6b00763
A. V. Zayats, I. I. Smolyaninov and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Reports, vol. 408, pp. 131-314, Marzo 2005. DOI: https://doi.org/10.1016/j.physrep.2004.11.001
Z. Ruan, H. Wu, M. Qiu and S. Fan, “Spatial control of surface plasmon polariton excitation at planar metal surface,” Opt. Letters, vol. 39, pp. 3587-3590, Enero 2014. DOI: https://doi.org/10.1364/OL.39.003587
C. Caiseda, I. Griva, L. Martinez, K. Shaw and D. Weingarten, “Numerical Optimization Technique for Optimal Design of the n Grooves Surface Plasmon Grating Coupler,” Procedia Comput. vol. 29, pp. 2145-2151, 2014. DOI: https://doi.org/10.1016/j.procs.2014.05.199
J. Banerjee M. Bera and M. Ray, “Simultaneous excitation of multi-spectral surface plasmon resonance using multi-stepped-thickness metallic film,” J. Appl. Phys. vol. 117, 113102, Marzo 2015. DOI: https://doi.org/10.1063/1.4915085
A. P. DemchenkoIntroduction to Fluorescence Sensing: Evanescent Field Effects and Plasmonic Enhancement of Luminescence in Sensing Technologies, 3ed, Switzerland, Springer, Cham, 2020. DOI: https://doi.org/10.1007/978-3-030-60155-3_13
T. Iqbal, “Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating,” Curr. Appl. Phys. vol. 15, pp. 1445-1452, Noviembre 2015. DOI: https://doi.org/10.1016/j.cap.2015.08.009
T. Iqbal and S. Afsheen, “Extraordinary optical transmission: Role of the slit width in 1D metallic grating on higher refractive index substrate,” Curr. Appl. Phys. vol. 16, pp. 453-458, Abril 2016. DOI: https://doi.org/10.1016/j.cap.2016.01.005
L. Salomon, G. Bassou, H. Aourag, J. P. Dufour and F. de Fornel, F. Carcenac, and A. V. Zayats, “Local Excitation of Surface Plasmon Polaritons at Discontinuities of a Metal Film: Theoretical Analysis and Optical Near-Field Measurements,” Phys. Rev. B, vol. 65, 125409, Marzo 2002. DOI: https://doi.org/10.1103/PhysRevB.65.125409
J. M. Gutierrez Villarreal, J. A. Gaspar Armenta and L. A. Mayoral Astorga, “Surface plasmon field enhancement: excitation by a short pulse or narrow beam of light,” J. Opt. Soc. Am. B, vol. 35, pp. 1040-1045, Marzo 2018. DOI: https://doi.org/10.1364/JOSAB.35.001040
Thorsten Liebermann and Wolfgang Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. vol. 171, pp. 115-130, Octubre 2000. DOI: https://doi.org/10.1016/S0927-7757(99)00550-6
Adam B. Taylor and Peter Zijlstra, “Single-Molecule Plasmon Sensing: Current Status and Future Prospects,” ACS Sensors, vol. 2, pp. 1103-1122, Agosto 2017. DOI: https://doi.org/10.1021/acssensors.7b00382
Thomas Grosges and Dominique Barchiesi, “Geometrical optimization of nanostrips for surface plasmon excitation: an analytical approach,” Opt. Letters, vol. 43, pp. 54-57, Enero 2018. DOI: https://doi.org/10.1364/OL.43.000054
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EPISTEMUS
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The magazine acquires the patrimonial rights of the articles only for diffusion without any purpose of profit, without diminishing the own rights of authorship.
The authors are the legitimate owners of the intellectual property rights of their respective articles, and in such quality, by sending their texts they express their desire to collaborate with the Epistemus Magazine, published biannually by the University of Sonora.
Therefore, freely, voluntarily and free of charge, once accepted the article for publication, they give their rights to the University of Sonora for the University of Sonora to edit, publish, distribute and make available through intranets, Internet or CD said work, without any limitation of form or time, as long as it is non-profit and with the express obligation to respect and mention the credit that corresponds to the authors in any use that is made of it.
It is understood that this authorization is not an assignment or transmission of any of your economic rights in favor of the said institution. The University of Sonora guarantees the right to reproduce the contribution by any means in which you are the author, subject to the credit being granted corresponding to the original publication of the contribution in Epistemus.
Unless otherwise indicated, all the contents of the electronic edition are distributed under a license for use and Creative Commons — Attribution-NonCommercial-ShareAlike 4.0 International — (CC BY-NC-SA 4.0) You can consult here the informative version and the legal text of the license. This circumstance must be expressly stated in this way when necessary.
The names and email addresses entered in this journal will be used exclusively for the purposes established in it and will not be provided to third parties or for their use for other purposes.