Enhancement of Electromagnetic Fields Under Surface Plasmon

Authors

DOI:

https://doi.org/10.36790/epistemus.v16i32.172

Keywords:

Surface Plasmon, field enhancement, Kretschmann geometry

Abstract

In this paper, the concept of surface plasmons and their applications are explained in a general way. In addition, it is shown that the Kretschmann geometry consisting of glass-metal-vacuum is one of the usually used to excite the electromagnetic field under the plasmon, because naturally on a flat surface it is not possible to get this effect, except for some particular cases of the incident source or beams combination. Also, the intensity or amplification of the field as a function of position is quantified and an important property of amplification is observed under the plasmon condition, in which the intensity of the field decays exponentially when moving away from the metal-vacuum interface. As well, is also made of research areas related to surface plasmons.

Downloads

Download data is not yet available.

References

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Physik, vol. 216, pp. 398-410, Julio 1968. DOI: https://doi.org/10.1007/BF01391532

E. Kretschmann, “Determination of the Optical Constants of Metals by Excitation of Surface Plasmons,” Z. Physik, vol. 241, pp. 313-321, Agosto 1971. DOI: https://doi.org/10.1007/BF01395428

W. H. Weber and G. W. Ford “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation,” Opt. Lett. vol. 6, pp. 122-124, Marzo 1981. DOI: https://doi.org/10.1364/OL.6.000122

D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films,” Phys. Rev. Lett. vol. 47, pp. 1927-1930, Agosto 1981. DOI: https://doi.org/10.1103/PhysRevLett.47.1927

M. Born and E. Wolf, Principles of Optics, 6ta ed. New York, Pergamon Press, 1987.

D. Sarid, R. T. Deck, A. E. Craig, R. K. Hickernell, R. S. Jameson, and J. J. Fasano, “Optical field enhancement by long-range surface-plasma waves,” Appl. Opt. vol. 21, pp. 3993-3995, Noviembre 1982. DOI: https://doi.org/10.1364/AO.21.003993

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev.B,vol. 73, 035407, Enero 2006. DOI: https://doi.org/10.1103/PhysRevB.73.035407

X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” Adv. Res. vol. 1, pp. 13-28, Enero 2010. DOI: https://doi.org/10.1016/j.jare.2010.02.002

Stefano Mariani and Maria Minunni, “Surface plasmon resonance applications in clinical analysis,” Anal. Bioanal. Chem. Vol. 406, pp. 2303-2323, Abril 2014. DOI: https://doi.org/10.1007/s00216-014-7647-5

Masson and Jean Francois, “Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics,” Am. Chem. Soc. Vol. 2, pp. 16-30, Enero 2017. DOI: https://doi.org/10.1021/acssensors.6b00763

A. V. Zayats, I. I. Smolyaninov and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Reports, vol. 408, pp. 131-314, Marzo 2005. DOI: https://doi.org/10.1016/j.physrep.2004.11.001

Z. Ruan, H. Wu, M. Qiu and S. Fan, “Spatial control of surface plasmon polariton excitation at planar metal surface,” Opt. Letters, vol. 39, pp. 3587-3590, Enero 2014. DOI: https://doi.org/10.1364/OL.39.003587

C. Caiseda, I. Griva, L. Martinez, K. Shaw and D. Weingarten, “Numerical Optimization Technique for Optimal Design of the n Grooves Surface Plasmon Grating Coupler,” Procedia Comput. vol. 29, pp. 2145-2151, 2014. DOI: https://doi.org/10.1016/j.procs.2014.05.199

J. Banerjee M. Bera and M. Ray, “Simultaneous excitation of multi-spectral surface plasmon resonance using multi-stepped-thickness metallic film,” J. Appl. Phys. vol. 117, 113102, Marzo 2015. DOI: https://doi.org/10.1063/1.4915085

A. P. DemchenkoIntroduction to Fluorescence Sensing: Evanescent Field Effects and Plasmonic Enhancement of Luminescence in Sensing Technologies, 3ed, Switzerland, Springer, Cham, 2020. DOI: https://doi.org/10.1007/978-3-030-60155-3_13

T. Iqbal, “Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating,” Curr. Appl. Phys. vol. 15, pp. 1445-1452, Noviembre 2015. DOI: https://doi.org/10.1016/j.cap.2015.08.009

T. Iqbal and S. Afsheen, “Extraordinary optical transmission: Role of the slit width in 1D metallic grating on higher refractive index substrate,” Curr. Appl. Phys. vol. 16, pp. 453-458, Abril 2016. DOI: https://doi.org/10.1016/j.cap.2016.01.005

L. Salomon, G. Bassou, H. Aourag, J. P. Dufour and F. de Fornel, F. Carcenac, and A. V. Zayats, “Local Excitation of Surface Plasmon Polaritons at Discontinuities of a Metal Film: Theoretical Analysis and Optical Near-Field Measurements,” Phys. Rev. B, vol. 65, 125409, Marzo 2002. DOI: https://doi.org/10.1103/PhysRevB.65.125409

J. M. Gutierrez Villarreal, J. A. Gaspar Armenta and L. A. Mayoral Astorga, “Surface plasmon field enhancement: excitation by a short pulse or narrow beam of light,” J. Opt. Soc. Am. B, vol. 35, pp. 1040-1045, Marzo 2018. DOI: https://doi.org/10.1364/JOSAB.35.001040

Thorsten Liebermann and Wolfgang Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. vol. 171, pp. 115-130, Octubre 2000. DOI: https://doi.org/10.1016/S0927-7757(99)00550-6

Adam B. Taylor and Peter Zijlstra, “Single-Molecule Plasmon Sensing: Current Status and Future Prospects,” ACS Sensors, vol. 2, pp. 1103-1122, Agosto 2017. DOI: https://doi.org/10.1021/acssensors.7b00382

Thomas Grosges and Dominique Barchiesi, “Geometrical optimization of nanostrips for surface plasmon excitation: an analytical approach,” Opt. Letters, vol. 43, pp. 54-57, Enero 2018. DOI: https://doi.org/10.1364/OL.43.000054

Published

2022-04-20

How to Cite

Gutiérrez Villarreal, J. M., Luna Bracamontes, A., Sepulveda Romo, A., Gaspar Armenta, J. A., & Britto Hurtado, R. A. (2022). Enhancement of Electromagnetic Fields Under Surface Plasmon. EPISTEMUS, 16(32), 20–26. https://doi.org/10.36790/epistemus.v16i32.172

Issue

Section

Research

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 15 16 17 

You may also start an advanced similarity search for this article.