Decomposition of Cyanide using Ozone and Iron Oxides
DOI:
https://doi.org/10.36790/epistemus.v15i31.202Keywords:
descomposition, cyanide, advanced oxidation processes, iron oxidesAbstract
Cyanidation has been for years the most used process for gold extraction; however, the resulting solutions affect the environment as they are toxic and complex. Some of the conventional processes for the elimination of cyanide is oxidation, however, this can be slow. Due to the above, this work focuses on the elimination of cyanide with advanced catalytic oxidation processes such as ozone and iron oxides. The experimental tests were developed under controlled conditions at the laboratory level, using iron oxides as catalysts. The results showed that by adding 1 g / L of iron oxides, the initial concentration of cyanide (250 ppm) was reduced to 11.9 ppm in an average of 11 minutes, on the other hand, in the tests that did not use said oxides at this time there were 150 ppm of cyanide in the solution.
Downloads
References
M. Logdson, K. Hagelstein and T. Mudder, “The managment of cyanide”, International Council on Metals and the Enviorment, pp.1-40, 1991.
N. Kuyucak and A. Akcil, “Cyanide and removal options from effluents in gold mining and metallurgical processes”, Minerals Engineering, Vol. 50, pp. 13-29, 2013. doi: https://doi.org/10.1016/j.mineng.2013.05.027 DOI: https://doi.org/10.1016/j.mineng.2013.05.027
T. Mudder and M. Botz, “Cyanide and society: A critical review”, The European Journal of Mineral Processing and Enviormental Protection, Vol. 4, pp. 62-74, 2004.
J. E. Angove and S. Acar, “Metallurgical Test Work: Gold Processing Options, Physical Ore Properties, and Cyanide Management. In Gold ore processing”, Elsevier, pp. 131-140, 2016. doi: 10.1016/S0167-4528(05)15004-2 DOI: https://doi.org/10.1016/B978-0-444-63658-4.00008-6
J. Sancho, B. Fernández, J. Ayala, M. Garcia and A. Lavandeira, “Aplicación del permanganato potásico para la eliminación de cianuros de cobre en aguas residuales de la planta de lixiviación en una mina de oro”, Revista Metalurgia, Vol. 45, pp. 315-320, 2004. doi: https://doi.org/10.3989/revmetalm.0846 DOI: https://doi.org/10.3989/revmetalm.0846
J. Forero, O. Ortiz and F. Ríos, “Aplicación de procesos de oxidación avanzada como tratamiento de fenol en aguas residuales industriales de refinería”, CT&F- Ciencia, Tecnología y Futuro, Vol. 3, pp. 97-109, 2005.
W. Alabdraba, A. Al-Obaidi, S. Hashim and S. Zangana, “Industrial Wastewater treatment by advanced oxidation processes - A Review”, Journal of Advanced Sciences and Engineering Technologies, Vol. 1, pp. 24-33, 2018. DOI: https://doi.org/10.32441/jaset.v1i2.118
Y. Jimenez-Prieto, G. Esperanza-Pérez, S. Ramírez-González and I. Alomas-Vicente, “Assessment of technological alternatives for cyanide waste waters management in gold ores processing plant”, Revista Cubana de Química, Vol. 32, pp. 218-231,2020.
N. Pueyo, N. Miguel, J. Ovelleiro and M. Ormad, “Limitations of the removal of cyanide from coking wastewater by ozonitation and by hydrogen peroxide-ozone process”, Water Science and Technology, pp. 482-490, 2016. doi: https://doi.org/10.2166/wst.2016.227 DOI: https://doi.org/10.2166/wst.2016.227
A. Buthiyappan, A. Raman, A. Aziz and W. Wan Daud, “Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents”, Rev. Chem. Eng, Vol. 32, pp. 1-47, 2016. doi: https://doi.org/10.1515/revce-2015-0034 DOI: https://doi.org/10.1515/revce-2015-0034
M. Lin, Q. Gu, X. Cui and X. Liu, “Cyanide containing wastewater treatment by ozone enhanced catalytic oxidation over diatomite catalysts”, MATEC Web of Conferences, Vol. 142, pp. 1-7, 2018. doi: https://doi.org/10.1051/matecconf/201814201003 DOI: https://doi.org/10.1051/matecconf/201814201003
S. Hanela, J. Durán and S. Jacobo, “Removal of iron-cyanide complexes from wastewaters by combined UV-ozone and modified zeolite treatment”, Journal of Enviormental Chemical Engineering, Vol.3, pp. 1794-1801, 2015. doi: https://doi.org/10.1016/j.jece.2015.06.023 DOI: https://doi.org/10.1016/j.jece.2015.06.023
M. Ristić, S. Musić and Z. Orehovec (2005). Thermal decomposition of synthetic ammonium jarosite. Journal of Molecular Structure, 744, 295-300. doi: https://doi.org/10.1016/j.molstruc.2004.10.051 DOI: https://doi.org/10.1016/j.molstruc.2004.10.051
F. Nava-Alonso, E. Elorza-Rodríguez, R. Pérez-Garibay and A. Uribe-Salas (2007). Análisis químico de cianuro en el proceso de cianuración: revisión de los principales métodos. Revista de Metalurgia, 43, 20-28. doi: https://doi.org/10.3989/revmetalm.2007.v43.i1.48 DOI: https://doi.org/10.3989/revmetalm.2007.v43.i1.48
B. Nyamunda, “Review of the Impact on Water Quality and Treatment Options of Cyanide Used in Gold Ore Processing”, Water Quality, Mutare, Zimbabwe: INTECH, pp. 225-243, 2017. doi: 10.5772/65706 DOI: https://doi.org/10.5772/65706
L. Yan, J. Bing, and H. Wu, “The behavior of ozone on different iron oxides surface sites in water”, Scientific Reports, pp. 2045-2322, 2019. doi: 10.1038/s41598-019-50910-w DOI: https://doi.org/10.1038/s41598-019-50910-w
B. Wang, H. Zhang, F. Wang, X. Xiong, K. Tian, Y. Sun, and T. Yu, “Application of heterogneous catalytic ozonation for refractory organics in wastewater”, Catalysts, pp. 1-40, 2019. doi: https://doi.org/10.3390/catal9030241 DOI: https://doi.org/10.3390/catal9030241
L. Quispe, M. D. C. Arteaga, E. Cárdenas, C. Santelices, E. Palenque, and S. Cabrera, “Eliminación de cianuro mediante sistema combinado UV/H2O2/TiO2”, Revista Boliviana de química, Vol. 28, pp. 113-118, 2011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EPISTEMUS
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The magazine acquires the patrimonial rights of the articles only for diffusion without any purpose of profit, without diminishing the own rights of authorship.
The authors are the legitimate owners of the intellectual property rights of their respective articles, and in such quality, by sending their texts they express their desire to collaborate with the Epistemus Magazine, published biannually by the University of Sonora.
Therefore, freely, voluntarily and free of charge, once accepted the article for publication, they give their rights to the University of Sonora for the University of Sonora to edit, publish, distribute and make available through intranets, Internet or CD said work, without any limitation of form or time, as long as it is non-profit and with the express obligation to respect and mention the credit that corresponds to the authors in any use that is made of it.
It is understood that this authorization is not an assignment or transmission of any of your economic rights in favor of the said institution. The University of Sonora guarantees the right to reproduce the contribution by any means in which you are the author, subject to the credit being granted corresponding to the original publication of the contribution in Epistemus.
Unless otherwise indicated, all the contents of the electronic edition are distributed under a license for use and Creative Commons — Attribution-NonCommercial-ShareAlike 4.0 International — (CC BY-NC-SA 4.0) You can consult here the informative version and the legal text of the license. This circumstance must be expressly stated in this way when necessary.
The names and email addresses entered in this journal will be used exclusively for the purposes established in it and will not be provided to third parties or for their use for other purposes.