Decomposition of Cyanide using Ozone and Iron Oxides

Authors

  • Marleth Roxana Garza Román Universidad Autónoma de Coahuila https://orcid.org/0000-0001-5178-5643
  • PhD Universidad Autónoma de Coahuila https://orcid.org/0000-0002-0413-0676
  • Ma. de Jesús Soria Aguilar Universidad Autónoma de Coahuila
  • Nallely Guadalupe Picazo Rodriguez Instituto Tecnológico Superior de Monclova

DOI:

https://doi.org/10.36790/epistemus.v15i31.202

Keywords:

descomposition, cyanide, advanced oxidation processes, iron oxides

Abstract

Cyanidation has been for years the most used process for gold extraction; however, the resulting solutions affect the environment as they are toxic and complex. Some of the conventional processes for the elimination of cyanide is oxidation, however, this can be slow. Due to the above, this work focuses on the elimination of cyanide with advanced catalytic oxidation processes such as ozone and iron oxides. The experimental tests were developed under controlled conditions at the laboratory level, using iron oxides as catalysts. The results showed that by adding 1 g / L of iron oxides, the initial concentration of cyanide (250 ppm) was reduced to 11.9 ppm in an average of 11 minutes, on the other hand, in the tests that did not use said oxides at this time there were 150 ppm of cyanide in the solution.

Downloads

Download data is not yet available.

References

M. Logdson, K. Hagelstein and T. Mudder, “The managment of cyanide”, International Council on Metals and the Enviorment, pp.1-40, 1991.

N. Kuyucak and A. Akcil, “Cyanide and removal options from effluents in gold mining and metallurgical processes”, Minerals Engineering, Vol. 50, pp. 13-29, 2013. doi: https://doi.org/10.1016/j.mineng.2013.05.027 DOI: https://doi.org/10.1016/j.mineng.2013.05.027

T. Mudder and M. Botz, “Cyanide and society: A critical review”, The European Journal of Mineral Processing and Enviormental Protection, Vol. 4, pp. 62-74, 2004.

J. E. Angove and S. Acar, “Metallurgical Test Work: Gold Processing Options, Physical Ore Properties, and Cyanide Management. In Gold ore processing”, Elsevier, pp. 131-140, 2016. doi: 10.1016/S0167-4528(05)15004-2 DOI: https://doi.org/10.1016/B978-0-444-63658-4.00008-6

J. Sancho, B. Fernández, J. Ayala, M. Garcia and A. Lavandeira, “Aplicación del permanganato potásico para la eliminación de cianuros de cobre en aguas residuales de la planta de lixiviación en una mina de oro”, Revista Metalurgia, Vol. 45, pp. 315-320, 2004. doi: https://doi.org/10.3989/revmetalm.0846 DOI: https://doi.org/10.3989/revmetalm.0846

J. Forero, O. Ortiz and F. Ríos, “Aplicación de procesos de oxidación avanzada como tratamiento de fenol en aguas residuales industriales de refinería”, CT&F- Ciencia, Tecnología y Futuro, Vol. 3, pp. 97-109, 2005.

W. Alabdraba, A. Al-Obaidi, S. Hashim and S. Zangana, “Industrial Wastewater treatment by advanced oxidation processes - A Review”, Journal of Advanced Sciences and Engineering Technologies, Vol. 1, pp. 24-33, 2018. DOI: https://doi.org/10.32441/jaset.v1i2.118

Y. Jimenez-Prieto, G. Esperanza-Pérez, S. Ramírez-González and I. Alomas-Vicente, “Assessment of technological alternatives for cyanide waste waters management in gold ores processing plant”, Revista Cubana de Química, Vol. 32, pp. 218-231,2020.

N. Pueyo, N. Miguel, J. Ovelleiro and M. Ormad, “Limitations of the removal of cyanide from coking wastewater by ozonitation and by hydrogen peroxide-ozone process”, Water Science and Technology, pp. 482-490, 2016. doi: https://doi.org/10.2166/wst.2016.227 DOI: https://doi.org/10.2166/wst.2016.227

A. Buthiyappan, A. Raman, A. Aziz and W. Wan Daud, “Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents”, Rev. Chem. Eng, Vol. 32, pp. 1-47, 2016. doi: https://doi.org/10.1515/revce-2015-0034 DOI: https://doi.org/10.1515/revce-2015-0034

M. Lin, Q. Gu, X. Cui and X. Liu, “Cyanide containing wastewater treatment by ozone enhanced catalytic oxidation over diatomite catalysts”, MATEC Web of Conferences, Vol. 142, pp. 1-7, 2018. doi: https://doi.org/10.1051/matecconf/201814201003 DOI: https://doi.org/10.1051/matecconf/201814201003

S. Hanela, J. Durán and S. Jacobo, “Removal of iron-cyanide complexes from wastewaters by combined UV-ozone and modified zeolite treatment”, Journal of Enviormental Chemical Engineering, Vol.3, pp. 1794-1801, 2015. doi: https://doi.org/10.1016/j.jece.2015.06.023 DOI: https://doi.org/10.1016/j.jece.2015.06.023

M. Ristić, S. Musić and Z. Orehovec (2005). Thermal decomposition of synthetic ammonium jarosite. Journal of Molecular Structure, 744, 295-300. doi: https://doi.org/10.1016/j.molstruc.2004.10.051 DOI: https://doi.org/10.1016/j.molstruc.2004.10.051

F. Nava-Alonso, E. Elorza-Rodríguez, R. Pérez-Garibay and A. Uribe-Salas (2007). Análisis químico de cianuro en el proceso de cianuración: revisión de los principales métodos. Revista de Metalurgia, 43, 20-28. doi: https://doi.org/10.3989/revmetalm.2007.v43.i1.48 DOI: https://doi.org/10.3989/revmetalm.2007.v43.i1.48

B. Nyamunda, “Review of the Impact on Water Quality and Treatment Options of Cyanide Used in Gold Ore Processing”, Water Quality, Mutare, Zimbabwe: INTECH, pp. 225-243, 2017. doi: 10.5772/65706 DOI: https://doi.org/10.5772/65706

L. Yan, J. Bing, and H. Wu, “The behavior of ozone on different iron oxides surface sites in water”, Scientific Reports, pp. 2045-2322, 2019. doi: 10.1038/s41598-019-50910-w DOI: https://doi.org/10.1038/s41598-019-50910-w

B. Wang, H. Zhang, F. Wang, X. Xiong, K. Tian, Y. Sun, and T. Yu, “Application of heterogneous catalytic ozonation for refractory organics in wastewater”, Catalysts, pp. 1-40, 2019. doi: https://doi.org/10.3390/catal9030241 DOI: https://doi.org/10.3390/catal9030241

L. Quispe, M. D. C. Arteaga, E. Cárdenas, C. Santelices, E. Palenque, and S. Cabrera, “Eliminación de cianuro mediante sistema combinado UV/H2O2/TiO2”, Revista Boliviana de química, Vol. 28, pp. 113-118, 2011.

Published

2022-04-08

How to Cite

Garza Román, M. R., Carrillo Pedroza, F. R., Soria Aguilar , M. de J. ., & Picazo Rodriguez , N. G. . (2022). Decomposition of Cyanide using Ozone and Iron Oxides. EPISTEMUS, 15(31), 63–69. https://doi.org/10.36790/epistemus.v15i31.202

Issue

Section

Research

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 

You may also start an advanced similarity search for this article.