Use of Biomaterials as an Alternative for Remediation of Mine Tailings

Authors

DOI:

https://doi.org/10.36790/epistemus.v15i31.208

Keywords:

Mine tailings, efflorescent salts, biomaterials, Remediation

Abstract

The benefits of the mining industry are undeniable; however, its waste is frequently associated with environmental problems, due to the presence of potentially toxic elements. The proposed remediation techniques are diverse, although the use of biomaterials has recently become popular as an economical sustainable alternative, where adsorbent biomaterials synthesized by pyrolysis of biological waste are used. In this work, bone char (BC; bio hydroxyapatite), synthesized from cattle bones, was tested for the remediation of historic mining tailings in San Felipe de Jesús, Sonora, through a factorial experimental design. The results showed that BC reduces the production of efflorescent salts, in addition to buffering parameters such as pH and EC, demonstrating its potential for treating acid mine drainage.

Downloads

Download data is not yet available.

References

R. H. Johnson, D. W. Blowes y W. D. J. Robertson, «The hydrogeochemistry of the Nickel Rim mine tailings impoundment, Sudbury, Ontario,» Journal of Contaminant Hydrology, vol. 41, nº 1-2, pp. 49-80, 2000. DOI: https://doi.org/10.1016/S0169-7722(99)00068-6

B. Dold y L. Fontboté, «Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing,» Journal of Geochemical Exploration, vol. 74, nº 1-3, pp. 3-55, 2001. DOI: https://doi.org/10.1016/S0375-6742(01)00174-1

B. G. Lottermoser, Sulfidic mine wastes in mine wastes, Berlin: Springer, 2010. DOI: https://doi.org/10.1007/978-3-642-12419-8

S. C. Wetzel, M. K. Banks y A. P. Schwab , Rhizosphere effects on the degradation of pyrene and anthracene in soil in Phytoremediation of Soil and Water Contaminants, USA: American Chemical Society, 1997, pp. 254-262. DOI: https://doi.org/10.1021/bk-1997-0664.ch018

P. J. Harvey, B. F. Campanella, P. M. Castro, H. Harms, E. Lichtfouse, A. R. Schäffner, S. Smrcek y D. Werck-Reichhart, «Phytoremediation of polyaromatic hydrocarbons, anilines and phenols,» Environmental Science and Pollution Research, vol. 9, nº 1, pp. 29-47, 2002. DOI: https://doi.org/10.1007/BF02987315

M. J. Zwetsloot, J. Lehmann, T. Bauerle, S. Vanek, R. Hestrin y A. Nigussie, «Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions,» Plant and soil, vol. 408, nº 1, pp. 95-105, 2016. DOI: https://doi.org/10.1007/s11104-016-2905-2

M. Gulyás, M. Fuchs, I. Kocsis y G. Füleky, «Effect of the soil treated with biochar on the rye-grass in laboratory experiment,» Acta Universitatis Sapientiae, Agriculture and Environment, vol. 6, nº 1, pp. 24-32, 2014. DOI: https://doi.org/10.2478/ausae-2014-0009

V. Hernández-Montoya, M. P. Elizalde-Gonzalez y R. Trejo-Vazquez, «Screening of commercial sorbents for removal of fluoride in synthetic and groundwater,» Environmental Technology, vol. 28, nº 6, pp. 595-607, 2007. DOI: https://doi.org/10.1080/09593332808618823

N. Kawasaki, F. Ogata, H. Tominaga y I. Yamaguchi, «Removal of fluoride ion by bone char produced from animal biomass,» Journal of Oleo Science, vol. 58, nº 10, pp. 529-535, 2009. DOI: https://doi.org/10.5650/jos.58.529

K. F. Mendes, K. E. Hall, V. Takeshita, M. L. Rossi y V. L. Tornisielo, «Animal bonechar increases sorption and decreases leaching potential of aminocyclopyrachlor and mesotrione in a tropical soil,» Geoderma, vol. 316, nº 1, pp. 11-18, 2018. DOI: https://doi.org/10.1016/j.geoderma.2017.12.017

D. O. d. l. F. Secretaria de Gobernación, «dof.gob.mx,» 6 Marzo 2017. [En línea]. Available: https://dof.gob.mx/nota_detalle.php?codigo=5475373&fecha=06/03/2017. [Último acceso: 22 Octubre 2021].

M. M. Campos y C. R. Campos, «Applications of quartering method in soils and foods,» International Journal of Engineering Research and Applications, vol. 7, nº 1, pp. 35-39, 2017. DOI: https://doi.org/10.9790/9622-0701023539

M. F. Encinas-Yánez, «Informe final de actividades de prácticas profesionales,» Cordinación Divisional de Ciencias Biológicas y de la Salud, Sonora, 2019.

G. C. Andreu , P. M. Saval, B. F. Brotons y T. J. A. Abril, «Prácticas de materiales de construcción I.T.O.P. Práctica No. 3,» Universidad de Alicante, España, 2008.

D. o. d. l. F. Secretaría de Medio Ambiente y Recursos Naturales, «dof.gob.mx,» 30 Agosto 2011. [En línea]. Available: http://www.dof.gob.mx/normasOficiales/4485/semarnat1/semarnat1.htm. [Último acceso: 22 Octubre 2021].

D. L. H. C. Ponce , Q. M. Hernández, P. C. Vanegas y C. S. Heydrich, Conceptos y procedimientos para el análisis de muestras ambientales, Mexico: Universidad Nacional Autónoma de México, 2012.

A. Morales-Pérez, V. Moreno-Rodríguez, R. Del Rio-Salas, N. G. Imam, B. González-Méndez, T. Pi-Puig, E. F. Molina-Freaner y R. Loredo-Portales, «Geochemical changes of Mn in contaminated agricultural soils nearby historical mine tailings: Insights from XAS, XRD and, SEP,» Chemical Geology, vol. 573, nº 1, p. 120217, 2021. DOI: https://doi.org/10.1016/j.chemgeo.2021.120217

U. E. P. A. USEPA, «epa.gov,» 1 Diciembre 1996. [En línea]. Available: https://www.epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf. [Último acceso: 22 Octubre 2021].

P. H. Warren, G. W. Kallemeyn, H. Huber, F. Ulff-Møller y W. Choe, «iderophile and other geochemical constraints on mixing relationships among HED-meteoritic breccias,» Geochimica et Cosmochimica Acta, vol. 73, nº 19, pp. 59518-5943, 2009. DOI: https://doi.org/10.1016/j.gca.2009.06.030

N. Siebers, K. Jens y P. Leinweber, «Siebers, N., Kruse, J. and Leinweber, P., 2013. Speciation of phosphorus and cadmium in a contaminated soil amended with bone char: Sequential fractionations and XANES spectroscopy,» Water, Air, & Soil Pollution, vol. 224, nº 5, pp. 1-13, 2013. DOI: https://doi.org/10.1007/s11270-013-1564-7

V. Jobbágy, T. Altzitzoglou, P. Malo, V. Tanner y M. Hult, «A brief overview on radon measurements in drinking water,» Journal of environmental radioactivity, vol. 173, nº 1, pp. 18-24, 2017. DOI: https://doi.org/10.1016/j.jenvrad.2016.09.019

E. Gruden, P. Bukovec y M. Zupančič, «Preliminary evaluation of animal bone char as potential metal stabilization agent in metal contaminated soil,» Acta Chimica Slovenica, vol. 64, nº 3, pp. 577-581, 2017. DOI: https://doi.org/10.17344/acsi.2016.2889

S. S. Alquzweeni y R. S. Alkizwini, «Alquzweeni, Saif S., and Rasha S. Alkizwini. "Removal of Cadmium from Contaminated Water Using Coated Chicken Bones with Double-Layer Hydroxide (Mg/Fe-LDH),» Water , vol. 12, nº 8, p. 2303, 2020. DOI: https://doi.org/10.3390/w12082303

Published

2022-03-31

How to Cite

Siqueros Valencia, J. R., Loredo Portales, R., Moreno Rodríguez, V., & Del Rio Salas, R. (2022). Use of Biomaterials as an Alternative for Remediation of Mine Tailings. EPISTEMUS, 15(31), 15–21. https://doi.org/10.36790/epistemus.v15i31.208

Issue

Section

Research

Metrics

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.