Detection of Metals in Water through Smartphones

Authors

  • Astrid Hernández Cruz Universidad Autónoma de Baja California-Facultad de Ciencias Marinas https://orcid.org/0000-0003-0776-5105
  • Hisila Santacruz Ortega Universidad de Sonora-Departamento de Investigación en Polímeros y Materiales

DOI:

https://doi.org/10.36790/epistemus.v17i35.299

Keywords:

colorimetry, heavy metals, smart phones

Abstract

The interest in portable analytical instruments that allow metal detection available to more users has grown recently. Smartphones have become portable laboratories. Analytical chemistry has found in phones an opportunity to detect and quantify different analytes in real time and space without the need of developing laboratory analysis (an example is the colorimetric detection of metals in water). In this article, the scope of smartphones as tools for metal detection is presented. In addition, a case study is presented in which a biodegradable sensing film based on starch, gelatin, and a colorimetric indicator was used to detect copper, zinc, and nickel.

Downloads

Download data is not yet available.

References

INEGI, “Encuesta Nacional sobre Disponibilidad y Uso de Tecnologías de la Información en los Hogares”, 2020. Recuperado de: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2021/OtrTemEcon/ENDUTIH_2020.pdf

Sivakumar, Rajamanickam, and Nae Yoon Lee. “Recent Progress in Smartphone-Based Techniques for Food Safety and the Detection of Heavy Metal Ions in Environmental Water” in Chemosphere, 2021, 275 (July): 130096. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130096. DOI: https://doi.org/10.1016/j.chemosphere.2021.130096

Y. Zhang, T. Xue, L. Cheng, J. Wang, R. Shen, J. Zhang, Smartphone-assisted colorimetric biosensor for on-site detection of Cr3+ ion analysis, Anal. Chim. Acta. 1199 (2022) 339603. https://doi.org/10.1016/J.ACA.2022.339603. DOI: https://doi.org/10.1016/j.aca.2022.339603

M.L. Firdaus, A. Aprian, N. Meileza, M. Hitsmi, R. Elvia, L. Rahmidar, R. Khaydarov, Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing, (2019). https://doi.org/10.3390/chemosensors7020025. DOI: https://doi.org/10.3390/chemosensors7020025

N. Emmanuel, R. Haridas, S. Chelakkara, R.B. Nair, A. Gopi, M. Sajitha, K. Yoosaf, Smartphone Assisted Colourimetric Detection and Quantification of Pb2+and Hg2+Ions Using Ag Nanoparticles from Aqueous Medium, IEEE Sens. J. 20 (2020) 8512–8519. https://doi.org/10.1109/JSEN.2020.2984580. DOI: https://doi.org/10.1109/JSEN.2020.2984580

An-Liang Zhang (2021) Smartphone-Based Colorimetric Detection of Heavy Metal Copper (II) Ion by Help of Surface Acoustic Wave, Ferroelectrics, 583:1, 41-50, https://doi.org/10.1080/00150193.2021.1980326 DOI: https://doi.org/10.1080/00150193.2021.1980326

Njue, N., Stenfert Kroese, J., Gräf, J., Jacobs, S. R., Weeser, B., Breuer, L., & Rufino, M. C. (2019). Citizen science in hydrological monitoring and ecosystem services management: State of the art and future prospects. Science of the Total Environment, 693, 133531. https://doi.org/10.1016/j.scitotenv.2019.07.337 DOI: https://doi.org/10.1016/j.scitotenv.2019.07.337

Priyadarshanee, Monika, and Surajit Das. “Journal of Environmental Chemical Engineering Biosorption and Removal of Toxic Heavy Metals by Metal Tolerating Bacteria for Bioremediation of Metal Contamination : A Comprehensive Review” in Journal of Environmental Chemical Engineering, 2020. https://doi.org/10.1016/j.jece.2020.104686. DOI: https://doi.org/10.1016/j.jece.2020.104686

Alloway, B. J.; Ayres, D. C., Chemical principles of environmental pollution. Blackie Academic and Professional. An imprint of Chapman and Hall. Oxford, UK: 1993. DOI: https://doi.org/10.1007/978-94-011-2148-4

Ayangbenro, Ayansina Segun, and Olubukola Oluranti Babalola. “A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents” in International Journal of Environmental Research and Public Health, 2017, 14 (1): 94. https://doi.org/10.3390/ijerph14010094. DOI: https://doi.org/10.3390/ijerph14010094

Hong, Y. J., Liao, W., Yan, Z. F., Bai, Y. C., Feng, C. L., Xu, Z. X., & Xu, D. Y. (2020). Progress in the research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. Journal of Chemistry, 2020, 1-12. DOI: https://doi.org/10.1155/2020/9010348

Brinkman, S.F., Johnston, W.D. Acute Toxicity of Zinc to Several Aquatic Species Native to the Rocky Mountains. Arch Environ Contam Toxicol 62, 272–281 (2012). https://doi.org/10.1007/s00244-011-9698-3 DOI: https://doi.org/10.1007/s00244-011-9698-3

Kaur, B., Kaur, N., & Kumar, S. (2018). Colorimetric metal ion sensors–a comprehensive review of the years 2011–2016. Coordination chemistry reviews, 358, 13-69. https://doi.org/10.1016/j.ccr.2017.12.002. DOI: https://doi.org/10.1016/j.ccr.2017.12.002

Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N., Luminescent chemosensors for transition metal ions. Coordination Chemistry Reviews 2000, 205 (1), 59-83. https://doi.org/10.1016/S0010-8545(00)00242-37 DOI: https://doi.org/10.1016/S0010-8545(00)00242-3

Trigo-López, M.; Muñoz, A.; Ibeas, S.; Serna, F.; García, F. C.; García, J. M., Colorimetric detection and determination of Fe (III), Co (II), Cu (II) and Sn (II) in aqueous media by acrylic polymers with pendant terpyridine motifs. Sensors and Actuators B: Chemical 2016, 226, 118-126. https://doi.org/10.1016/j.snb.2015.11.116 DOI: https://doi.org/10.1016/j.snb.2015.11.116

Obasi, Philip Njoku, and Bennard Benedict Akudinobi. “Potential Health Risk and Levels of Heavy Metals in Water Resources of Lead–Zinc Mining Communities of Abakaliki, Southeast Nigeria”in Applied Water Science,2020, 10 (7): 1–23. https://doi.org/10.1007/s13201-020-01233-z. DOI: https://doi.org/10.1007/s13201-020-01233-z

Sommer, I., Fernández, P., Rivas, H., & Gutiérrez, M. E. (2000). La geoestadística como herramienta en estudios de contaminación de suelos. Análisis de caso: afectación de suelo por arsénico, plomo y cadmio contenidos en jales mineros. Revista internacional de contaminación ambiental, 16(4), 205-214.

Hernandez, J., Patino, F., Rivera, I., Reyes, I. A., Flores, M. U., Juarez, J. C., & Reyes, M. (2014). Leaching kinetics in cyanide media of Ag contained in the industrial mining-metallurgical wastes in the state of Hidalgo, Mexico. International Journal of Mining Science and Technology, 24(5), 689-694. DOI: https://doi.org/10.1016/j.ijmst.2014.07.003

Alvillo-Rivera, A., Garrido-Hoyos, S., Buitron, G., Thangarasu-Sarasvathi, P., & Rosano-Ortega, G. (2021). Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology, 12, 1418-1433. DOI: https://doi.org/10.1016/j.jmrt.2021.03.030

Secretaría de Medio Ambiente y Recursos Naturales. Dictamen Diagnóstico Ambiental Río Sonora. 28 de septiembre de 2023. Recuperado el 15 de noviembre de 2023 de: https://www.gob.mx/semarnat/documentos/dictamen-diagnostico-ambiental-rio-sonora?state=publishe

Zhang, Meng, Lina Zhang, Huafeng Tian, and Ang Lu. “Universal Preparation of Cellulose-Based Colorimetric Sensor for Heavy Metal Ion Detection” in Carbohydrate Polymers, 2020, vol. 236: 116037. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.116037. DOI: https://doi.org/10.1016/j.carbpol.2020.116037

Hernández Cruz, A. “Detección Colorimétrica de Metales Potencialmente Tóxicos en Agua por Películas Sensoras (Maestría)”, 2018. Universidad de Sonora.

WHO, Guidelines for drinking-water quality, World Health Organization, 2004. Recuperado el 11 de noviembre de 2023 de: https://www.who.int/publications/i/item/9789241549950.

Dorsey, A., & Ingerman, L. (2004). Toxicological profile for copper.

Rubio, C.; González Weller, D.; Martín-Izquierdo, R. E.; Revert, C.; Rodríguez, I.; Hardisson, A., El zinc: oligoelemento esencial. Nutrición Hospitalaria 2007, 22 (1), 101-107.

Olivares Arias, V.; Valverde Som, L.; Quiros Rodríguez, V.; García Romero, R.; Muñoz, N.; Navarro Alarcón, M.; Cabrera Vique, C., Níquel en alimentos y factores influyentes en sus niveles, ingesta, biodisponibilidad y toxicidad: una revisión. CyTA-Journal of Food 2015, 13 (1), 87-101.https://doi.org/10.1080/19476337.2014.917383 DOI: https://doi.org/10.1080/19476337.2014.917383

Ye, Shuang, Lanlan Li, Yue Ou, Weijia Li, Shu Zhang, Ke Huang, Hong Luo, Zhirong Zou, and Xiaoli Xiong. “In Situ Formation of Silver Nanoparticles via Hydride Generation: A Miniaturized/Portable Visual Colorimetric System for Arsenic Detection in Environmental Water Samples” in Analytica Chimica, 2022, Acta 1192: 339366. https://doi.org/10.1016/J.ACA.2021.339366. DOI: https://doi.org/10.1016/j.aca.2021.339366

Fernandes, Gabriel Martins, Weida R. Silva, Diandra Nunes Barreto, Rafaela S. Lamarca, Paulo Clairmont F. Lima Gomes, João Flávio da S Petruci, and Alex D. Batista. “Novel Approaches for Colorimetric Measurements in Analytical Chemistry – A Review” in Analytica Chimica 2020, Acta 1135 (October): 187–203. https://doi.org/10.1016/J.ACA.2020.07.030 DOI: https://doi.org/10.1016/j.aca.2020.07.030

Shishkin, Y. L.; Dmitrienko, S. G.; Medvedeva, O. M.; Badakova, S. A.; Pyatkova, L. N., Use of a scanner and digital image-processing software for the quantification of adsorbed substances. Journal of Analytical Chemistry 2004, 59 (2), 102-106. https://doi.org/10.1023/B:JANC.0000014733.32082.4b DOI: https://doi.org/10.1023/B:JANC.0000014733.32082.4b

Capitán-Vallvey, L. F.; Lopez-Ruiz, N.; Martinez-Olmos, A.; Erenas, M. M.; Palma, A. J., Recent developments in computer vision-based analytical chemistry: A tutorial review. Analytica chimica acta 2015, 899, 23-56. DOI: https://doi.org/10.1016/j.aca.2015.10.009

Askim, J. R.; Mahmoudi, M.; Suslick, K. S. “Optical sensor arrays for chemical sensing: the optoelectronic nose” in Chemical Society Reviews 2013, 42 (22), 8649-8682. DOI: https://doi.org/10.1039/c3cs60179j

O. Laatikainen, T. Samarina, P. Haapea, A. Belenikhina, Participatory Monitoring as A Supportive Tool for Better Situational Awareness in Contaminants’ Leakage and Prevention of Environmental Pollution, Procedia Environ. Sci. Eng. Manag. 7 (2020) 131–136.

À. Boso, B. Álvarez, C. Oltra, J. Garrido, C. Muñoz, Á. Hofflinger, Out of sight, out of mind: participatory sensing for monitoring indoor air quality, Environ. Monit. Assess. 192 (2020). https://doi.org/10.1007/s10661-019-8058-z. DOI: https://doi.org/10.1007/s10661-019-8058-z

A. Commodore, S. Wilson, O. Muhammad, E. Svendsen, J. Pearce, Community-based participatory research for the study of air pollution: a review of motivations, approaches, and outcomes, Environ. Monit. Assess. 189 (2017). https://doi.org/10.1007/s10661-017-6063-7. DOI: https://doi.org/10.1007/s10661-017-6063-7

D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele, “IPSN’12 - Proceedings of the 11th International Conference on Information Processing in Sensor Networks,” IPSN’12 - Proc. 11th Int. Conf. Inf. Process. Sens. Networks, pp. 1–5, 2012.

A. Burgos, R. Páez, E. Carmona, H. Rivas, A systems approach to modeling Community-Based Environmental Monitoring: a case of participatory water quality monitoring in rural Mexico, Environ. Monit. Assess. 185 (2013) 10297–10316. DOI: https://doi.org/10.1007/s10661-013-3333-x

sensor

Published

2023-12-15

How to Cite

Hernández Cruz, A., & Santacruz Ortega, H. (2023). Detection of Metals in Water through Smartphones. EPISTEMUS, 17(35), 98–106. https://doi.org/10.36790/epistemus.v17i35.299

Issue

Section

Science Technology and Society

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.