Holography and Mathematics

Authors

DOI:

https://doi.org/10.36790/epistemus.v18i37.367

Keywords:

Hologram, laser light, wave equation, Kirchhoff solution, stationary phase

Abstract

The general objective of this paper is to analyze mathematically the physical process of reproduction of a transmission hologram, in order to contrast directly observable results with approximations obtained theoretically. On one hand, when observing a hologram, a region is located on it where a three-dimensional object is faithfully reproduced using a special photographic technique called holography. On the other hand, by applying a simple mathematical model to describe this fact, through the well-known classical wave equation —with a solution given in Kirchhoff form, which is analyzed using an asymptotic method of complex analysis— an approximate result is obtained that allows for a congruent conclusion about this particular process.

Downloads

Download data is not yet available.

References

[[1] P.R. Garabedian. Partial Differential Equations. Chelsea Publishing Co., 1986. DOI: https://doi.org/10.1016/B978-0-12-044375-8.50016-2

G. Saxby. Practical Holography. Boca Raton, Florida: IoP Publishing, 2004.

Disponible en https://doi.org/10.1201/9781420033663 DOI: https://doi.org/10.1201/9781420033663

H.M. Smith. Principles of Holography. Nueva York: John Wiley & Sons, 1979.

R. Flores-Espinoza y R. González-González. Temas y Problemas Selectos de Análisis Matemático. Teoremas de Existencia y Aplicaciones. Hermosillo, Sonora: Universidad de Sonora, 2022.

Disponible en https://doi.org/10.47807/UNISON.95 DOI: https://doi.org/10.47807/UNISON.95

J.E. Marsden. Elementary Classical Analysis. San Francisco: W.H Freeman and Company, 1974.

M.G. García y R. González-González. Notas de Cálculo Vectorial. Hermosillo, Sonora: Universidad de Sonora, 2019.

Disponible en https://www.mat.uson.mx/sitio/documentos/libros/Notas_Calculo_Vectorial.pdf

G.B. Arfken. Mathematical Methods for Physicists, 3.a ed. Orlando: Academic Press,1985.

Disponible en https://doi.org/10.1016/C2013-0-10310-8 DOI: https://doi.org/10.1016/C2013-0-10310-8

R. Courant y D. Hilbert. Methods of Mathematical Physics: Vol. II. Partial Differential Equations. Interscience Publishers, 1965.

J.W. Dettman. Applied Complex Variables. Nueva York: Dover Publications, 1984.

A. Erdelyi. Asymptotic Expansions. Dover Publications, 1956. DOI: https://doi.org/10.21236/AD0055660

B. Friedman. Lectures on Applications-Oriented Mathematics. Nueva York: John Wiley & Sons, 1991. DOI: https://doi.org/10.1002/9781118033111

J.P. Keener. Principles of Applied Mathematics. Transformation and Approximation.

Addison-Wesley, 1988.

Disponible en https://doi.org/10.2307/3618500 DOI: https://doi.org/10.2307/3618500

E. Mihaylova. Holography–Basic Principles and Contemporary Applications.

InTech DTP, 2013.

Disponible en http://dx.doi.org/10.5772/46111 DOI: https://doi.org/10.5772/46111

I. Stakgold. Green's Functions and Boundary Value Problems. Nueva York: John Wiley & Sons, 1979.

luz lazer

Published

2025-02-06

How to Cite

GONZALEZ GONZALEZ, R., & González Valenzuela, A. G. (2025). Holography and Mathematics. EPISTEMUS, 18(37), e3709367. https://doi.org/10.36790/epistemus.v18i37.367

Issue

Section

From the academy

Metrics

Most read articles by the same author(s)