Contaminants present in water and their potential health impact

Authors

DOI:

https://doi.org/10.36790/epistemus.v19i38.407

Keywords:

Public health, Water quality, Toxic substances, Water pollution, Contaminants of emerging concern

Abstract

Health is directly linked to water quality. The incidence of poisoning and diseases, caused by the exposure to toxic water pollutants has significantly increased over time, to the point of becoming a growing public health concern. Human activities and the rise in global population rates contribute to both surface and groundwater pollution. Consequently, there is a pressing need to promote legislation and to establish regulations to limit the presence of toxic substances not yet addressed by national or international standards, as well as to develop efficient strategies for the detection and removal of contaminants of emerging concern that pose a threat to public and environmental health. The aim of this article is to address this issue, which is closely aligned with the United Nations Sustainable Development Goals agenda.

 

Downloads

Download data is not yet available.

References

WHO, Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. Geneva: World Health Organization, 2022. [En línea]. Disponible en: https://www.who.int/publications/i/item/9789240045064

S. Sauvé y M. Desrosiers, “A review of what is an emerging contaminant”, Chemistry Central Journal, vol. 8, n.o 1, p. 15, dic. 2014, doi: 10.1186/1752-153X-8-15. DOI: https://doi.org/10.1186/1752-153X-8-15

S. Heidrich, M. Schirmer, H. Weiss, P. Wycisk, J. Grossmann, y A. Kaschl, “Regionally contaminated aquifers - toxicological relevance and remediation options (Bitterfeld case study)”, Toxicology, vol. 205, n.o 3, pp. 143-155, dic. 2004, doi: 10.1016/j.tox.2004.06.055. DOI: https://doi.org/10.1016/j.tox.2004.06.055

P. H. P. Stefano, A. Roisenberg, M. R. Santos, M. A. Dias, y C. C. Montagner, “Unraveling the occurrence of contaminants of emerging concern in groundwater from urban setting: A combined multidisciplinary approach and self-organizing maps”, Chemosphere, vol. 299, p. 134395, jul. 2022, doi: 10.1016/j.chemosphere.2022.134395. DOI: https://doi.org/10.1016/j.chemosphere.2022.134395

C. J. Vörösmarty et al., “Global threats to human water security and river biodiversity”, Nature, vol. 467, n.o 7315, pp. 555-561, sep. 2010, doi: 10.1038/nature09440. DOI: https://doi.org/10.1038/nature09440

J. W. Tracy, A. Guo, K. Liang, J. Bartram, y M. Fisher, “Sources of and Solutions to Toxic Metal and Metalloid Contamination in Small Rural Drinking Water Systems: A Rapid Review”, IJERPH, vol. 17, n.o 19, p. 7076, sep. 2020, doi: 10.3390/ijerph17197076. DOI: https://doi.org/10.3390/ijerph17197076

M. Rigoletto, P. Calza, E. Gaggero, y E. Laurenti, “Hybrid materials for the removal of emerging pollutants in water: classification, synthesis, and properties”, Chemical Engineering Journal Advances, vol. 10, p. 100252, may 2022, doi: 10.1016/j.ceja.2022.100252. DOI: https://doi.org/10.1016/j.ceja.2022.100252

R. K. Mishra, S. S. Mentha, Y. Misra, y N. Dwivedi, “Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research”, Water-Energy Nexus, vol. 6, pp. 74-95, dic. 2023, doi: 10.1016/j.wen.2023.08.002. DOI: https://doi.org/10.1016/j.wen.2023.08.002

V. K. Parida, D. Saidulu, A. Majumder, A. Srivastava, B. Gupta, y A. K. Gupta, “Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives”, Journal of Environmental Chemical Engineering, vol. 9, n.o 5, p. 105966, oct. 2021, doi: 10.1016/j.jece.2021.105966. DOI: https://doi.org/10.1016/j.jece.2021.105966

P. Kovalakova, L. Cizmas, T. J. McDonald, B. Marsalek, M. Feng, y V. K. Sharma, “Occurrence and toxicity of antibiotics in the aquatic environment: A review”, Chemosphere, vol. 251, p. 126351, jul. 2020, doi: 10.1016/j.chemosphere.2020.126351. DOI: https://doi.org/10.1016/j.chemosphere.2020.126351

EPA, “Drinking Water Health Advisories for PFOA and PFOS”, Environmental Protection Agency, EPA 800-F-16-003, 2016. [En línea]. Disponible en: https://www.epa.gov/sites/default/files/2016-06/documents/drinkingwaterhealthadvisories_pfoa_pfos_updated_5.31.16.pdf

ATSDR, “Malathion”, Agency for Toxic Substances and Disease Registry, Fact Sheet, 2003. [En línea]. Disponible en: https://www.atsdr.cdc.gov/toxfaqs/tfacts154.pdf

EPA, “National Primary Drinking Water Regulations”, Environmental Protection Agency, EPA 816-F-09-004, 2009. [En línea]. Disponible en: https://www.epa.gov/sites/default/files/2016-06/documents/npwdr_complete_table.pdf

Secretaría de Salud, “NOM-127-SSA1-2021, Agua para uso y consumo humano. Límites permisibles de la calidad del agua”, Secretaría de Salud, Ciudad de México, Diario Oficial de la Federación, 2021. [En línea]. Disponible en: https://www.dof.gob.mx/nota_detalle_popup.php?codigo=5650705

EPA, “Phthalates”, Environmental Protection Agency, Action Plan, 2012. [En línea]. Disponible en: https://www.epa.gov/sites/default/files/2015-09/documents/phthalates_actionplan_revised_2012-03-14.pdf

EPA, “Polybrominated Diphenyl Ethers (PBDEs)”, Environmental Protection Agency, Fact Sheet EPA 505-F-17-015, 2017. [En línea]. Disponible en: https://www.epa.gov/sites/default/files/2014-03/documents/ffrrofactsheet_contaminant_perchlorate_january2014_final_0.pdf

WHO, Guidelines for drinking-water quality: small water supplies. World Health Organization, 2024. [En línea]. Disponible en: https://www.who.int/publications/i/item/9789240088740

L. E. Armstrong y G. L. Guo, “Understanding Environmental Contaminants’ Direct Effects on Non-alcoholic Fatty Liver Disease Progression”, Current Environmental Health Reports, vol. 6, n.o 3, pp. 95-104, sep. 2019, doi: 10.1007/s40572-019-00231-x. DOI: https://doi.org/10.1007/s40572-019-00231-x

C. R. Kothapalli, “Differential impact of heavy metals on neurotoxicity during development and in aging central nervous system”, Current Opinion in Toxicology, vol. 26, pp. 33-38, jun. 2021, doi: 10.1016/j.cotox.2021.04.003. DOI: https://doi.org/10.1016/j.cotox.2021.04.003

C. C. Thomas, A. C. Nsonwu-Anyanwu, C. A. O. Usoro, E. S. Agoro, y A. N. Idenyi, “Hepato-renal toxicities associated with heavy metal contamination of water sources among residents of an oil contaminated area in Nigeria”, Ecotoxicology and Environmental Safety, vol. 212, p. 111988, abr. 2021, doi: 10.1016/j.ecoenv.2021.111988. DOI: https://doi.org/10.1016/j.ecoenv.2021.111988

E. Habeeb et al., “Role of environmental toxicants in the development of hypertensive and cardiovascular diseases”, Toxicology Reports, vol. 9, pp. 521-533, ene. 2022, doi: 10.1016/j.toxrep.2022.03.019. DOI: https://doi.org/10.1016/j.toxrep.2022.03.019

A. Popov Aleksandrov et al., “Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: Cadmium as an example”, Immunology Letters, vol. 240, pp. 106-122, dic. 2021, doi: 10.1016/j.imlet.2021.10.003. DOI: https://doi.org/10.1016/j.imlet.2021.10.003

V. Naffaa, O. Laprévote, y A.-L. Schang, “Effects of endocrine disrupting chemicals on myelin development and diseases”, NeuroToxicology, vol. 83, pp. 51-68, mar. 2021, doi: 10.1016/j.neuro.2020.12.009. DOI: https://doi.org/10.1016/j.neuro.2020.12.009

S. G. Danby et al., “The Effect of Water Hardness on Surfactant Deposition after Washing and Subsequent Skin Irritation in Atopic Dermatitis Patients and Healthy Control Subjects”, Journal of Investigative Dermatology, vol. 138, n.o 1, pp. 68-77, ene. 2018, doi: 10.1016/j.jid.2017.08.037. DOI: https://doi.org/10.1016/j.jid.2017.08.037

H. A. González-Ponce, A. R. Rincón-Sánchez, F. Jaramillo-Juárez, y H. Moshage, “Natural Dietary Pigments: Potential Mediators against Hepatic Damage Induced by Over-The-Counter Non-Steroidal Anti-Inflammatory and Analgesic Drugs”, Nutrients, vol. 10, n.o 2, 2018, doi: 10.3390/nu10020117. DOI: https://doi.org/10.3390/nu10020117

T. Wang, L. Wang, Q. Chen, N. Kalogerakis, R. Ji, y Y. Ma, “Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport”, Science of The Total Environment, vol. 748, p. 142427, dic. 2020, doi: 10.1016/j.scitotenv.2020.142427. DOI: https://doi.org/10.1016/j.scitotenv.2020.142427

P. Pal et al., “Molecular basis of fluoride toxicities: Beyond benefits and implications in human disorders”, Genes & Diseases, vol. 10, n.o 4, pp. 1470-1493, jul. 2023, doi: 10.1016/j.gendis.2022.09.004. DOI: https://doi.org/10.1016/j.gendis.2022.09.004

F. González-Martínez, B. Johnson-Restrepo, y L. A. Quiñones, “Arsenic inorganic exposure, metabolism, genetic biomarkers and its impact on human health: A mini-review”, Toxicology Letters, vol. 398, pp. 105-117, jul. 2024, doi: 10.1016/j.toxlet.2024.06.008. DOI: https://doi.org/10.1016/j.toxlet.2024.06.008

P. Bhattacharjee, M. Banerjee, y A. K. Giri, “Role of genomic instability in arsenic-induced carcinogenicity. A review”, Environment International, vol. 53, pp. 29-40, mar. 2013, doi: 10.1016/j.envint.2012.12.004. DOI: https://doi.org/10.1016/j.envint.2012.12.004

J. Briffa, E. Sinagra, y R. Blundell, “Heavy metal pollution in the environment and their toxicological effects on humans”, Heliyon, vol. 6, n.o 9, p. e04691, sep. 2020, doi: 10.1016/j.heliyon.2020.e04691. DOI: https://doi.org/10.1016/j.heliyon.2020.e04691

E. I. Prest, F. Hammes, M. C. M. van Loosdrecht, y J. S. Vrouwenvelder, “Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges”, Front. Microbiol., vol. 7, feb. 2016, doi: 10.3389/fmicb.2016.00045. DOI: https://doi.org/10.3389/fmicb.2016.00045

H. Li, C. Smith, L. Wang, Z. Li, C. Xiong, y R. Zhang, “Combining Spatial Analysis and a Drinking Water Quality Index to Evaluate Monitoring Data”, IJERPH, vol. 16, n.o 3, p. 357, ene. 2019, doi: 10.3390/ijerph16030357. DOI: https://doi.org/10.3390/ijerph16030357

H. Wang, M. A. Edwards, J. O. Falkinham, y A. Pruden, “Probiotic Approach to Pathogen Control in Premise Plumbing Systems? A Review”, Environ. Sci. Technol., vol. 47, n.o 18, pp. 10117-10128, sep. 2013, doi: 10.1021/es402455r. DOI: https://doi.org/10.1021/es402455r

J. Wingender y H.-C. Flemming, “Biofilms in drinking water and their role as reservoir for pathogens”, International Journal of Hygiene and Environmental Health, vol. 214, n.o 6, pp. 417-423, nov. 2011, doi: 10.1016/j.ijheh.2011.05.009. DOI: https://doi.org/10.1016/j.ijheh.2011.05.009

G. Singh, A. Singh, y V. Kumar Mishra, “A critical review of occurrence, sources, fate, ecological risk, and health effect of emerging contaminants in water and wastewater”, Environmental Nanotechnology, Monitoring & Management, p. 100994, sep. 2024, doi: 10.1016/j.enmm.2024.100994. DOI: https://doi.org/10.1016/j.enmm.2024.100994

G. Nandikes, P. Pathak, A. S. Razak, V. Narayanamurthy, y L. Singh, “Occurrence, environmental risks and biological remediation mechanisms of Triclosan in wastewaters: Challenges and perspectives”, Journal of Water Process Engineering, vol. 49, p. 103078, oct. 2022, doi: 10.1016/j.jwpe.2022.103078. DOI: https://doi.org/10.1016/j.jwpe.2022.103078

T. M. Tri et al., “Emerging Endocrine Disrupting Chemicals and Pharmaceuticals in Vietnam: A Review of Environmental Occurrence and Fate in Aquatic and Indoor Environments”, en Persistent Organic Chemicals in the Environment: Status and Trends in the Pacific Basin Countries II Temporal Trends, vol. 1244, 0 vols., en ACS Symposium Series, no. 1244, vol. 1244. American Chemical Society, 2016, pp. 223-253. doi: 10.1021/bk-2016-1244.ch010. DOI: https://doi.org/10.1021/bk-2016-1244.ch010

P. Chinnaiyan, S. G. Thampi, M. Kumar, y K. M. Mini, “Pharmaceutical products as emerging contaminant in water: relevance for developing nations and identification of critical compounds for Indian environment”, Environmental Monitoring and Assessment, vol. 190, n.o 5, p. 288, abr. 2018, doi: 10.1007/s10661-018-6672-9. DOI: https://doi.org/10.1007/s10661-018-6672-9

B. M. Sharma et al., “Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India”, Science of The Total Environment, vol. 646, pp. 1459-1467, ene. 2019, doi: 10.1016/j.scitotenv.2018.07.235. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.235

K. Świacka, A. Michnowska, J. Maculewicz, M. Caban, y K. Smolarz, “Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment”, Environmental Pollution, vol. 273, p. 115891, mar. 2021, doi: 10.1016/j.envpol.2020.115891. DOI: https://doi.org/10.1016/j.envpol.2020.115891

M. Sousi et al., “Multi-parametric assessment of biological stability of drinking water produced from groundwater: Reverse osmosis vs. conventional treatment”, Water Research, vol. 186, p. 116317, nov. 2020, doi: 10.1016/j.watres.2020.116317. DOI: https://doi.org/10.1016/j.watres.2020.116317

R. T. Wilkin, T. R. Lee, D. G. Beak, R. Anderson, y B. Burns, “Groundwater co-contaminant behavior of arsenic and selenium at a lead and zinc smelting facility”, Applied Geochemistry, vol. 89, pp. 255-264, feb. 2018, doi: 10.1016/j.apgeochem.2017.12.011. DOI: https://doi.org/10.1016/j.apgeochem.2017.12.011

A. Malek, G. R. Rao, y T. Thomas, “Waste-to-wealth approach in water economy: The case of beneficiation of mercury-contaminated water in hydrogen production”, International Journal of Hydrogen Energy, vol. 46, n.o 52, pp. 26677-26692, jul. 2021, doi: 10.1016/j.ijhydene.2021.05.133. DOI: https://doi.org/10.1016/j.ijhydene.2021.05.133

F. J. A. Avelar González, E. M. Ramírez López, Ma. C. Martínez Saldaña, A. L. Guerrero Barrera, F. Jaramillo Juárez, y J. L. Reyes Sánchez, “Water Quality in the State of Aguascalientes and its Effects on the Population’s Health”, en Water Resources in Mexico: Scarcity, Degradation, Stress, Conflicts, Management, and Policy, Ú. Oswald Spring, Ed., Berlin, Heidelberg: Springer, 2011, pp. 217-229. doi: 10.1007/978-3-642-05432-7_16. DOI: https://doi.org/10.1007/978-3-642-05432-7_16

B. S. Amézaga-Campos, R. Villanueva-Estrada, A. Carrillo-Chavez, J. I. Morales-Arredondo, y J. Morán-Ramírez, “Hydrogeochemistry characterization of an overexploited municipal, agricultural, and industrial aquifer, central Mexico”, Applied Geochemistry, vol. 142, p. 105310, jul. 2022, doi: 10.1016/j.apgeochem.2022.105310. DOI: https://doi.org/10.1016/j.apgeochem.2022.105310

A. T. Aparicio y P. de J. Hernández Canales, “Gestión de riesgos y desastres socioambientales. El caso de la mina Buenavista del cobre de Cananea”, Investigaciones Geográficas, Boletín del Instituto de Geografía, vol. 2017, n.o 93, pp. 126-139, ago. 2017, doi: 10.14350/rig.54770. DOI: https://doi.org/10.14350/rig.54770

Secretaría de Medio Ambiente y Recursos Naturales, “NOM-014-CONAGUA-2003, Requisitos para la recarga artificial de acuíferos con agua residual tratada”, Secretaría de Medio Ambiente y Recursos Naturales, Ciudad de México, Diario Oficial de la Federación, 2009. [En línea]. Disponible en: https://dof.gob.mx/nota_detalle_popup.php?codigo=5105753

Ilustración del abastecimiento de agua potable a través de una red hidráulica local en malas condiciones que promueve la contaminación y degradación de la calidad del agua (imagen obtenida por Microsoft Designer)

Published

2025-05-26

How to Cite

González-Ponce, H. A., & Bonilla-Petriciolet, A. (2025). Contaminants present in water and their potential health impact. EPISTEMUS, 19(38), e3811407. https://doi.org/10.36790/epistemus.v19i38.407

Issue

Section

Science Technology and Society

Metrics