Orujo de Uva: Más que un Residuo, una Fuente de Compuestos Bioactivos

Autores/as

  • Madelina López-Astorga Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora https://orcid.org/0000-0003-2151-437X
  • Claudia Celeste Molina-Domínguez Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora
  • Maribel Ovando-Martínez https://orcid.org/0000-0002-3282-9636
  • Marcos Leon-Bejarano Universidad de Sonora, Departamento de Investigación en Polímeros y Materiales https://orcid.org/0000-0002-8938-4447

DOI:

https://doi.org/10.36790/epistemus.v16i33.283

Palabras clave:

Orujo, Subproductos del Vino, Vitis vinifera L., Compuestos Bioactivos

Resumen

El orujo de uva es el principal subproducto sólido generado durante la elaboración del vino, y es generalmente considerado como un residuo. Sin embargo, la creciente preocupación con respecto al impacto negativo hacia el medio ambiente que supone el mal manejo de los residuos agroindustriales ha incentivado a la búsqueda del manejo y/o aprovechamiento de los subproductos. En este sentido, diversas investigaciones han demostrado el potencial del orujo de uva como una fuente para la obtención de diversos compuestos bioactivos (compuestos con propiedades biológicas benéficas para el ser humano), que podrían ser aprovechados en la industria alimentaria, cosmética y/o farmacéutica para beneficio humano. La presente revisión tiene como objetivo dar a conocer información relevante al respecto, con la finalidad de que el orujo de uva sea considerado como una fuente potencial para la obtención de compuestos con interés biológico aplicables en distintas industrias a nivel nacional.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Marcos Leon-Bejarano, Universidad de Sonora, Departamento de Investigación en Polímeros y Materiales

Químico Biólogo Clínico con Maestría en Biociencias (Biotecnología de Recursos Naturales), actualmente estudiante de Doctorado en Ciencias de los Materiales. Principal interés en el aprovechamiento de subproductos agroindustriales como fuente de compuestos bioactivos, y biomateriales para el desarrollo de apósitos para heridas. 

Citas

L. Snopek et al., “Contribution of Red Wine Consumption to Human Health Protection,” Mol. 2018, Vol. 23, Page 1684, vol. 23, no. 7, p. 1684, Jul. 2018, doi: 10.3390/MOLECULES23071684. DOI: https://doi.org/10.3390/molecules23071684

“World Statistics | OIV,” 2022. https://www.oiv.int/what-we-do/global-report?oivogle.com/search?q=%5B2%5D+https%3A%2F%2Fwww.oiv.int%2Fwhat-we-do%2Fglobal-report%3Foiv&rlz=1C1VDKB_esMX1011MX1011&oq=%5B2%5D%09https%3A%2F%2Fwww.oiv.int%2Fwhat-we-do%2Fglobal-report%3Foiv&aqs=chrome.0.69i59. (accessed Dec. 02, 2022).

M. Gómez-Brandón, M. Lores, H. Insam, and J. Domínguez, “Strategies for recycling and valorization of grape marc,” https://doi.org/10.1080/07388551.2018.1555514, vol. 39, no. 4, pp. 437–450, May 2019, doi: 10.1080/07388551.2018.1555514. DOI: https://doi.org/10.1080/07388551.2018.1555514

R. Ferrer-Gallego and P. Silva, “The Wine Industry By-Products: Applications for Food Industry and Health Benefits,” Antioxidants 2022, Vol. 11, Page 2025, vol. 11, no. 10, p. 2025, Oct. 2022, doi: 10.3390/ANTIOX11102025. DOI: https://doi.org/10.3390/antiox11102025

S. Maicas and J. J. Mateo, “Sustainability of Wine Production,” Sustain. 2020, Vol. 12, Page 559, vol. 12, no. 2, p. 559, Jan. 2020, doi: 10.3390/SU12020559. DOI: https://doi.org/10.3390/su12020559

K. I. B. Moro, A. B. B. Bender, L. P. da Silva, and N. G. Penna, “Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review,” Food Bioprocess Technol. 2021 148, vol. 14, no. 8, pp. 1407–1431, May 2021, doi: 10.1007/S11947-021-02665-4. DOI: https://doi.org/10.1007/s11947-021-02665-4

M. Spinei and M. Oroian, “The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances,” Foods 2021, Vol. 10, Page 867, vol. 10, no. 4, p. 867, Apr. 2021, doi: 10.3390/FOODS10040867.

C. Beres et al., “Towards integral utilization of grape pomace from winemaking process: A review,” Waste Manag., vol. 68, pp. 581–594, Oct. 2017, doi: 10.1016/J.WASMAN.2017.07.017. DOI: https://doi.org/10.1016/j.wasman.2017.07.017

M. Bordiga, F. Travaglia, and M. Locatelli, “Valorisation of grape pomace: an approach that is increasingly reaching its maturity – a review,” Int. J. Food Sci. Technol., vol. 54, no. 4, pp. 933–942, Apr. 2019, doi: 10.1111/IJFS.14118. DOI: https://doi.org/10.1111/ijfs.14118

I. C. Bocsan et al., “Antioxidant and Anti-Inflammatory Actions of Polyphenols from Red and White Grape Pomace in Ischemic Heart Diseases,” Biomed. 2022, Vol. 10, Page 2337, vol. 10, no. 10, p. 2337, Sep. 2022, doi: 10.3390/BIOMEDICINES10102337. DOI: https://doi.org/10.3390/biomedicines10102337

J. N. Averilla, J. Oh, H. J. Kim, J. S. Kim, and J. S. Kim, “Potential health benefits of phenolic compounds in grape processing by-products,” Food Sci. Biotechnol., vol. 28, no. 6, pp. 1607–1615, Dec. 2019, doi: 10.1007/S10068-019-00628-2/FIGURES/2. DOI: https://doi.org/10.1007/s10068-019-00628-2

O. R. Alara, N. H. Abdurahman, and C. I. Ukaegbu, “Extraction of phenolic compounds: A review,” Curr. Res. Food Sci., vol. 4, pp. 200–214, Jan. 2021, doi: 10.1016/J.CRFS.2021.03.011. DOI: https://doi.org/10.1016/j.crfs.2021.03.011

B. R. Albuquerque, S. A. 8. Heleno, M. B. P. P. Oliveira, L. Barros, and I. C. F. R. Ferreira, “Phenolic compounds: current industrial applications, limitations and future challenges,” Food Funct., vol. 12, no. 1, pp. 14–29, Jan. 2021, doi: 10.1039/D0FO02324H. DOI: https://doi.org/10.1039/D0FO02324H

A. Durazzo et al., “Polyphenols: A concise overview on the chemistry, occurrence, and human health,” Phyther. Res., vol. 33, no. 9, pp. 2221–2243, Sep. 2019, doi: 10.1002/PTR.6419. DOI: https://doi.org/10.1002/ptr.6419

F. Cosme, T. Pinto, and A. Vilela, “Phenolic Compounds and Antioxidant Activity in Grape Juices: A Chemical and Sensory View,” Beverages 2018, Vol. 4, Page 22, vol. 4, no. 1, p. 22, Mar. 2018, doi: 10.3390/BEVERAGES4010022. DOI: https://doi.org/10.3390/beverages4010022

A. Fontana et al., “Phenolics profiling of pomace extracts from different grape varieties cultivated in Argentina,” RSC Adv., vol. 7, no. 47, pp. 29446–29457, Jun. 2017, doi: 10.1039/C7RA04681B. DOI: https://doi.org/10.1039/C7RA04681B

A. Muñoz-Bernal et al., “Phytochemical Characterization and Antiplatelet Activity of Mexican Red Wines and Their By-products,” South African J. Enol. Vitic., vol. 42, no. 1, pp. 77–90, 2021, doi: 10.21548/42-1-4450. DOI: https://doi.org/10.21548/42-1-4450

E. S. V. Rezende, G. C. Lima, and M. M. V. Naves, “Dietary fibers as beneficial microbiota modulators: A proposal classification by prebiotic categories,” Nutrition, vol. 89, Sep. 2021, doi: 10.1016/J.NUT.2021.111217. DOI: https://doi.org/10.1016/j.nut.2021.111217

J. Cui et al., “Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota,” Compr. Rev. Food Sci. Food Saf., vol. 18, no. 5, pp. 1514–1532, Sep. 2019, doi: 10.1111/1541-4337.12489. DOI: https://doi.org/10.1111/1541-4337.12489

A. K. Chakka and A. S. Babu, “Bioactive Compounds of Winery by-products: Extraction Techniques and their Potential Health Benefits,” Appl. Food Res., vol. 2, no. 1, p. 100058, Jun. 2022, doi: 10.1016/J.AFRES.2022.100058. DOI: https://doi.org/10.1016/j.afres.2022.100058

M. R. González-Centeno, C. Rosselló, S. Simal, M. C. Garau, F. López, and A. Femenia, “Physico-chemical properties of cell wall materials obtained from ten grape varieties and their byproducts: grape pomaces and stems,” LWT - Food Sci. Technol., vol. 43, no. 10, pp. 1580–1586, Dec. 2010, doi: 10.1016/J.LWT.2010.06.024. DOI: https://doi.org/10.1016/j.lwt.2010.06.024

P. Chowdhary, A. Gupta, E. Gnansounou, A. Pandey, and P. Chaturvedi, “Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition,” Environ. Pollut., vol. 278, p. 116796, Jun. 2021, doi: 10.1016/J.ENVPOL.2021.116796. DOI: https://doi.org/10.1016/j.envpol.2021.116796

T. Ilyas, P. Chowdhary, D. Chaurasia, E. Gnansounou, A. Pandey, and P. Chaturvedi, “Sustainable green processing of grape pomace for the production of value-added products: An overview,” Environ. Technol. Innov., vol. 23, p. 101592, Aug. 2021, doi: 10.1016/J.ETI.2021.101592. DOI: https://doi.org/10.1016/j.eti.2021.101592

B. V McCleary et al., “Total Dietary Fiber (CODEX Definition) in Foods and Food Ingredients by a Rapid Enzymatic-Gravimetric Method and Liquid Chromatography: Collaborative Study, First Action 2017.16,” J. AOAC Int., vol. 102, no. 1, pp. 196–207, Jan. 2019, doi: 10.5740/JAOACINT.18-0180. DOI: https://doi.org/10.5740/jaoacint.18-0180

M. Troilo, G. Difonzo, V. M. Paradiso, C. Summo, and F. Caponio, “Bioactive Compounds from Vine Shoots, Grape Stalks, and Wine Lees: Their Potential Use in Agro-Food Chains,” Foods 2021, Vol. 10, Page 342, vol. 10, no. 2, p. 342, Feb. 2021, doi: 10.3390/FOODS10020342. DOI: https://doi.org/10.3390/foods10020342

Y. Zhou, W. Zhao, Y. Lai, B. Zhang, and D. Zhang, “Edible Plant Oil: Global Status, Health Issues, and Perspectives,” Front. Plant Sci., vol. 11, p. 1315, Aug. 2020, doi: 10.3389/FPLS.2020.01315/BIBTEX. DOI: https://doi.org/10.3389/fpls.2020.01315

J. Garavaglia, M. M. Markoski, A. Oliveira, and A. Marcadenti, “The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances,” Foods 2021, Vol. 10, Page 867, vol. 10, no. 4, p. 867, Apr. 2021, doi: 10.3390/FOODS10040867. DOI: https://doi.org/10.3390/foods10040867

M. E. Martin, E. Grao-Cruces, M. C. Millan-Linares, and S. Montserrat-De la Paz, “Grape (Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry,” Foods 2020, Vol. 9, Page 1360, vol. 9, no. 10, p. 1360, Sep. 2020, doi: 10.3390/FOODS9101360. DOI: https://doi.org/10.3390/foods9101360

J. Chen and H. Liu, “Nutritional Indices for Assessing Fatty Acids: A Mini-Review,” Int. J. Mol. Sci. 2020, Vol. 21, Page 5695, vol. 21, no. 16, p. 5695, Aug. 2020, doi: 10.3390/IJMS21165695. DOI: https://doi.org/10.3390/ijms21165695

I. A. Mohamed Ahmed et al., “Chemical composition, bioactive compounds, mineral contents, and fatty acid composition of pomace powder of different grape varieties,” J. Food Process. Preserv., vol. 44, no. 7, p. e14539, Jul. 2020, doi: 10.1111/JFPP.14539. DOI: https://doi.org/10.1111/jfpp.14539

G. Y. Lee and S. N. Han, “The Role of Vitamin E in Immunity,” Nutr. 2018, Vol. 10, Page 1614, vol. 10, no. 11, p. 1614, Nov. 2018, doi: 10.3390/NU10111614. DOI: https://doi.org/10.3390/nu10111614

C. Yang et al., “Processing technologies, phytochemical constituents, and biological activities of grape seed oil (GSO): A review,” Trends Food Sci. Technol., vol. 116, pp. 1074–1083, Oct. 2021, doi: 10.1016/J.TIFS.2021.09.011. DOI: https://doi.org/10.1016/j.tifs.2021.09.011

R. A. Moreau et al., “Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses,” Prog. Lipid Res., vol. 70, pp. 35–61, Apr. 2018, doi: 10.1016/J.PLIPRES.2018.04.001. DOI: https://doi.org/10.1016/j.plipres.2018.04.001

H. Lutterodt, M. Slavin, M. Whent, E. Turner, and L. Yu, “Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours,” Food Chem., vol. 128, no. 2, pp. 391–399, Sep. 2011, doi: 10.1016/J.FOODCHEM.2011.03.040. DOI: https://doi.org/10.1016/j.foodchem.2011.03.040

M. Durante et al., “Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products,” J. Food Compos. Anal., vol. 63, pp. 65–72, Oct. 2017, doi: 10.1016/J.JFCA.2017.07.026. DOI: https://doi.org/10.1016/j.jfca.2017.07.026

F. B. Shinagawa, F. C. de Santana, E. Araujo, E. Purgatto, and J. Mancini-Filho, “Chemical composition of cold pressed Brazilian grape seed oil,” Food Sci. Technol., vol. 38, no. 1, pp. 164–171, Oct. 2017, doi: 10.1590/1678-457X.08317. DOI: https://doi.org/10.1590/1678-457x.08317

L. I. Elvira-Torales, J. García-Alonso, and M. J. Periago-Castón, “Nutritional Importance of Carotenoids and Their Effect on Liver Health: A Review,” Antioxidants 2019, Vol. 8, Page 229, vol. 8, no. 7, p. 229, Jul. 2019, doi: 10.3390/ANTIOX8070229. DOI: https://doi.org/10.3390/antiox8070229

A. G. Godswill, I. V. Somtochukwu, A. O. Ikechukwu, and E. C. Kate, “Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review,” Int. J. Food Sci., vol. 3, no. 1, pp. 1–32, Jan. 2020, doi: 10.47604/IJF.1024. DOI: https://doi.org/10.47604/ijf.1024

F. F. Zhang, S. I. Barr, H. McNulty, D. Li, and J. B. Blumberg, “Health effects of vitamin and mineral supplements,” BMJ, vol. 369, Jun. 2020, doi: 10.1136/BMJ.M2511. DOI: https://doi.org/10.1136/bmj.m2511

E. C. Sousa et al., “Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil,” Food Sci. Technol., vol. 34, no. 1, pp. 135–142, 2014, doi: 10.1590/S0101-20612014000100020. DOI: https://doi.org/10.1590/S0101-20612014000100020

A. Nayak, B. Bhushan, A. Rosales, L. R. Turienzo, and J. L. Cortina, “Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and study of kinetics,” Food Bioprod. Process., vol. 109, pp. 74–85, May 2018, doi: 10.1016/J.FBP.2018.03.004. DOI: https://doi.org/10.1016/j.fbp.2018.03.004

A. Tikhonova, N. Ageeva, and E. Globa, “Grape pomace as a promising source of biologically valuable components,” BIO Web Conf., vol. 34, p. 06002, 2021, doi: 10.1051/BIOCONF/20213406002. DOI: https://doi.org/10.1051/bioconf/20213406002

B. Antonić, S. Jančíková, D. Dordević, and B. Tremlová, “Grape Pomace Valorization: A Systematic Review and Meta-Analysis,” Foods 2020, Vol. 9, Page 1627, vol. 9, no. 11, p. 1627, Nov. 2020, doi: 10.3390/FOODS9111627. DOI: https://doi.org/10.3390/foods9111627

K. Sridhar and A. L. Charles, “Fortification using grape extract polyphenols – a review on functional food regulations,” Int. J. Food Sci. Technol., vol. 56, no. 8, pp. 3742–3751, Aug. 2021, doi: 10.1111/IJFS.15001. DOI: https://doi.org/10.1111/ijfs.15001

M. Cruzado and J. C. Cedrón, “Nutracéuticos, alimentos funcionales y su producción,” Rev. Química, vol. 26, no. 1–2, pp. 33–36, Aug. 2012, Accessed: Dec. 05, 2022. [Online]. Available: https://revistas.pucp.edu.pe/index.php/quimica/article/view/7307

J. M. Boff, V. J. Strasburg, G. T. Ferrari, H. de O. Schmidt, V. Manfroi, and V. R. de Oliveira, “Chemical, Technological, and Sensory Quality of Pasta and Bakery Products Made with the Addition of Grape Pomace Flour,” Foods 2022, Vol. 11, Page 3812, vol. 11, no. 23, p. 3812, Nov. 2022, doi: 10.3390/FOODS11233812. DOI: https://doi.org/10.3390/foods11233812

P. Kandylis, D. Dimitrellou, and T. Moschakis, “Recent applications of grapes and their derivatives in dairy products,” Trends Food Sci. Technol., vol. 114, pp. 696–711, Aug. 2021, doi: 10.1016/J.TIFS.2021.05.029. DOI: https://doi.org/10.1016/j.tifs.2021.05.029

F. Mainente, A. Menin, A. Alberton, G. Zoccatelli, and C. Rizzi, “Evaluation of the sensory and physical properties of meat and fish derivatives containing grape pomace powders,” Int. J. Food Sci. Technol., vol. 54, no. 4, pp. 952–958, Apr. 2019, doi: 10.1111/IJFS.13850. DOI: https://doi.org/10.1111/ijfs.13850

M. E. dos S. Silva, C. V. B. Grisi, S. P. da Silva, M. S. Madruga, and F. A. P. da Silva, “The technological potential of agro-industrial residue from grape pulping (Vitis spp.) for application in meat products: A review,” Food Biosci., vol. 49, p. 101877, Oct. 2022, doi: 10.1016/J.FBIO.2022.101877. DOI: https://doi.org/10.1016/j.fbio.2022.101877

M. L. Soto, E. Falqué, and H. Domínguez, “Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics,” Cosmet. 2015, Vol. 2, Pages 259-276, vol. 2, no. 3, pp. 259–276, Aug. 2015, doi: 10.3390/COSMETICS2030259. DOI: https://doi.org/10.3390/cosmetics2030259

M. A. Nunes, F. Rodrigues, and M. B. P. P. Oliveira, “Grape Processing By-Products as Active Ingredients for Cosmetic Proposes,” Handb. Grape Process. By-Products Sustain. Solut., pp. 267–292, Jan. 2017, doi: 10.1016/B978-0-12-809870-7.00011-9. DOI: https://doi.org/10.1016/B978-0-12-809870-7.00011-9

I. Hoss et al., “Valorization of Wine-Making By-Products’ Extracts in Cosmetics,” Cosmet. 2021, Vol. 8, Page 109, vol. 8, no. 4, p. 109, Nov. 2021, doi: 10.3390/COSMETICS8040109. DOI: https://doi.org/10.3390/cosmetics8040109

M. Ferri et al., “Recovery of polyphenols from red grape pomace and assessment of their antioxidant and anti-cholesterol activities,” N. Biotechnol., vol. 33, no. 3, pp. 338–344, May 2016, doi: 10.1016/J.NBT.2015.12.004. DOI: https://doi.org/10.1016/j.nbt.2015.12.004

C. M. Peixoto et al., “Grape pomace as a source of phenolic compounds and diverse bioactive properties,” Food Chem., vol. 253, pp. 132–138, Jul. 2018, doi: 10.1016/J.FOODCHEM.2018.01.163. DOI: https://doi.org/10.1016/j.foodchem.2018.01.163

A. A. Gaafar, M. S. Asker, A. M.a., and Z. A. Salama, “The effectiveness of the functional components of grape (Vitis vinifera) pomace as antioxidant, antimicrobial, and antiviral agents.,” Jordan J. Biol. Sci., vol. 12, no. 5, pp. 625–635, 2019.

R. M. Pop, A. Popolo, A. P. Trifa, and L. A. Stanciu, “Phytochemicals in Cardiovascular and Respiratory Diseases: Evidence in Oxidative Stress and Inflammation,” Oxid. Med. Cell. Longev., vol. 2018, 2018, doi: 10.1155/2018/1603872. DOI: https://doi.org/10.1155/2018/1603872

C. Denny et al., “Bioprospection of Petit Verdot grape pomace as a source of anti-inflammatory compounds,” J. Funct. Foods, vol. 8, no. 1, pp. 292–300, May 2014, doi: 10.1016/J.JFF.2014.03.016. DOI: https://doi.org/10.1016/j.jff.2014.03.016

Orujo de uva

Publicado

2023-01-31

Cómo citar

López-Astorga, M., Molina-Domínguez, C. C., Ovando-Martínez, M., & Leon-Bejarano, M. (2023). Orujo de Uva: Más que un Residuo, una Fuente de Compuestos Bioactivos. EPISTEMUS, 16(33), 115–122. https://doi.org/10.36790/epistemus.v16i33.283

Número

Sección

Ciencia, Tecnología y Sociedad

Métrica

Artículos similares

<< < 3 4 5 6 7 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.