Tendencias en las alternativas de control de Bemisia tabaci en cultivos agrícolas intensivos

Autores/as

DOI:

https://doi.org/10.36790/epistemus.v18i37.365

Palabras clave:

Mosquita blanca, manejo integrado de plagas, cultivos agrícolas

Resumen

Bemisia tabaci (Gennadius) es un insecto polífago que ha invadido los campos de cultivos agrícolas en todo el mundo. El control más efectivo en los sistemas de producción intensivos se ha basado en el uso de insecticidas químicos, a pesar de sus efectos adversos. Ante esto, actualmente emergen alternativas de control con alta eficiencia que pueden ser empleadas para el control de esta plaga en los invernaderos. Sin embargo, la introducción de una nueva estrategia de control en un sistema de producción intensivo representa un reto que debe evaluarse antes de su implementación. En el presente trabajo se presenta una revisión del estado actual de las estrategias de control más efectivas contra esta plaga en la producción agrícola intensiva.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Y. Li, G. N. Mbata, S. Punnuri, A. M. Simmons y D. I. Shapiro-Ilan, “Bemisia tabaci on Vegetables in the Southern United States: Incidence, Impact, and Management”, Insects, vol. 12, p. 198, 2021. http://doi.org/10.3390/insects12030198 DOI: https://doi.org/10.3390/insects12030198

R. M. Hassan, H. M. Abouyousef, K. H. E. Haggag y B. Y. Riad, “Evaluation of enzymes role in insecticides resistance mechanism of Bemisia tabaci (GENNADIUS) from seven governorates of Egypt,” Plant Archives, vol. 20, pp. 565-573, 2020.

T. R. Grasswitz, “Integrated Pest Management (IPM) for Small-Scale Farms in Developed Economies: Challenges and Opportunities,” Insects, vol. 10, p. 179, 2019. http://doi.org/10.3390/INSECTS10060179 DOI: https://doi.org/10.3390/insects10060179

L. J. Cao, Y. F. Gao, Y. J. Gong, J. C. Chen, M. Chen, A. Hoffmann y S. J. Wei, “Population analysis reveals genetic structure of an invasive agricultural thrips pest related to invasion of greenhouses and suitable climatic space,” Evolutionary Applications, vol. 12, pp. 1868-1880, 2019. http://doi.org/10.1111/eva.12847 DOI: https://doi.org/10.1111/eva.12847

A. R. Horowitz, M. Ghanim, E. Roditakis, R. Nauen y I. Ishaaya, “Insecticide resistance and its management in Bemisia tabaci species,” Journal of Pest Science, vol. 93, pp. 893-910. 2020. http://doi.org/10.1007/s10340-020-01210-0 DOI: https://doi.org/10.1007/s10340-020-01210-0

T. C. Sparks, N. Storer, A. Porter, R. Slater y R. Nauen, “Insecticide resistance management and industry: the origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme,” Pest Management Science, vol. 77, pp. 2609-2619, 2021. http://doi.org/10.1002/PS.6254 DOI: https://doi.org/10.1002/ps.6254

A. G. Latora, C. B. Codod, S. Legarrea, B. Dutta, R. C. Kemerait, S. Adkins, W. Turechek, T. Coolong, da A. L. B. R. Silva y R. Srinivasan, “Combining Cultural Tactics and Insecticides for the Management of the Sweetpotato Whitefly, Bemisia tabaci MEAM1, and Viruses in Yellow Squash,” Horticulturae, vol. 8, p. 341, 2022. http://doi.org/10.3390/HORTICULTURAE8040341 DOI: https://doi.org/10.3390/horticulturae8040341

J. U. Niemann, M. Menssen y H. M. Poehling, “Manipulation of landing behaviour of two whitefly species by reflective foils,” Journal of Plant Diseases and Protection, vol. 128, 97-108, 2021. https://doi.org/10.1007/s41348-020-00394-y DOI: https://doi.org/10.1007/s41348-020-00394-y

J. Chen, Y. Fan, T. Wang, C. Zhang, Z. Qiu y Y. He, “Automatic Segmentation and Counting of Aphid Nymphs on Leaves Using Convolutional Neural Networks,” Agronomy, vol. 8, p. 129, 2018. http://doi.org/10.3390/agronomy8080129 DOI: https://doi.org/10.3390/agronomy8080129

R. Yanagisawa, R. Suwa, T. Takanashi y H. Tatsuta, “Substrate-borne vibrations reduced the density of tobacco whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) infestations on tomato, Solanum lycopersicum: an experimental assessment,” Applied Entomology and Zoology, vol. 56, pp. 157-163, 2021. http://doi.org/10.1007/s13355-020-00711-9 DOI: https://doi.org/10.1007/s13355-020-00711-9

T. C. Leskey, B. D. Short, M. Emery, B. Evans, W. Janisiewicz y F. Takeda, “Effect of UV-C Irradiation on Greenhouse Whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae),” Florida Entomologist, vol. 104, pp. 148-150, 2021. http://doi.org/10.1653/024.104.0215 DOI: https://doi.org/10.1653/024.104.0215

J. U. Niemann y H. M. Poehling, “Effect of narrow-banded blue LED device on host plant settlement by greenhouse whitefly and currant-lettuce aphid,” Journal of Plant Diseases and Protection, pp. 1-9, 2022. http://doi.org/10.1007/S41348-022-00622-7 DOI: https://doi.org/10.1007/s41348-022-00622-7

N. Johnston, T. Paris, M. L. Paret, J. Freeman y X. Martini, “Repelling whitefly (Bemisia tabaci) using limonene-scented kaolin: A novel pest management strategy,” Crop Protection, vol. 154, p. 105905, 2022. http://doi.org/10.1016/j.cropro.2022.105905 DOI: https://doi.org/10.1016/j.cropro.2022.105905

E. S. Melo, F. A. de Assis, F. J. Carvalho, G. A. de Assis y F. A. Rodrigues, “Does diatomaceous earth improve agronomic characteristics and induce resistance to arthropod pest in physalis?,” Revista de Ciências Agroveterinárias, vol. 21, pp. 504-515, 2022. http://doi.org/10.5965/223811712142022504 DOI: https://doi.org/10.5965/223811712142022504

V. Zeni, G. V. Baliota, G. Benelli, A. Canale y C. G. Athanassiou, “Diatomaceous Earth for Arthropod Pest Control: Back to the Future,” Molecules, vol. 26, p. 7487, 2021. http://doi.org/10.3390/MOLECULES26247487 DOI: https://doi.org/10.3390/molecules26247487

H. A. Smith, “Biopesticides for Management of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae) and Tomato Yellow Leaf Curl Virus,” Journal of Economic Entomology, vol. 113, pp. 2310-2318, 2020. https://doi.org/10.1093/jee/toaa131 DOI: https://doi.org/10.1093/jee/toaa131

R. Buitenhuis, M. Brownbridge, A. Brommit, T. Saito y G. Murphy, “How to Start with a Clean Crop: Biopesticide Dips Reduce Populations of Bemisia tabaci (Hemiptera: Aleyrodidae) on Greenhouse Poinsettia Propagative Cuttings,” Insects, vol. 7, p. 48, 2016. http://doi.org/10.3390/INSECTS7040048 DOI: https://doi.org/10.3390/insects7040048

T. Curkovic, “Detergents and soaps as tools for IPM in agriculture. Integrated pest management (IPM),” Environ Sound Pest Manag, vol. 5, pp. 12-23, 2016. https://doi.org/10.5772/64343 DOI: https://doi.org/10.5772/64343

P. Juma, N. Njau, C. M. Micheni, H. A. Khan, O. W. Mitalo y D. Odongo, “Trends in Neem (Azadirachta indica)-Based Botanical Pesticides” New and Future Development in Biopesticide Research: Biotechnological Exploration, pp. 137-156, 2022. http://doi.org/10.1007/978-981-16-3989-0_5 DOI: https://doi.org/10.1007/978-981-16-3989-0_5

M. D. Gogi, A. H. Syed, B. Atta, M. Sufyan, M. J. Arif, M. Arshad, A. Nawaz, M. A. Khan, A. Mukhtar y O. E. Liburd, “Efficacy of biorational insecticides against Bemisia tabaci (Genn.) and their selectivity for its parasitoid Encarsia formosa Gahan on Bt cotton,” Scientific Reports, vol. 11, 1-12, 2021. http://doi.org/10.1038/s41598-021-81585-x DOI: https://doi.org/10.1038/s41598-021-81585-x

A. Kheirodin, A. M. Simmons, J. C. Legaspi, E. E. Grabarczyk, M. D. Toews, P. M. Roberts y J. M. Schmidt, “Can generalist predators control Bemisia tabaci?,” Insects, vol. 11, pp. 823, 2020. https://doi.org/10.3390/insects11110823 DOI: https://doi.org/10.3390/insects11110823

S. Pehlivan, T. Alinç, T. D. Achiri y E. Atakan, “Functional responses of two predatory bugs (Hemiptera: Anthocoridae) to changes in the abundance of Tetranychus urticae (Acari: Tetranychidae) and Bemisia tabaci (Hemiptera: Aleyrodidae),” EUROPEAN JOURNAL OF ENTOMOLOGY, vol. 117, 49-55, 2020. http://doi.org/10.14411/EJE.2020.005 DOI: https://doi.org/10.14411/eje.2020.005

D. B. Silva, A. Hanel, F. P. Franco, M. de Castro Silva‐Filho y J. M. S. Bento, “Two in one: the neotropical mirid predator Macrolophus basicornis increases pest control by feeding on plants,” Pest Management Science, vol. 78, vol. 3314-3323, 2022. https://doi.org/10.1002/ps.6958 DOI: https://doi.org/10.1002/ps.6958

I. J. Nair, S. Sharma y R. Kaur, “Efficacy of the green lace wing, Chrysoperla zastrowi sillemi (Esben-Peterson) (Neuroptera: Chrysopidae), against sucking pests of tomato: an appraisal under protected conditions,” Egyptian Journal of Biological Pest Control, 30, 1-6, 2020. http://doi.org/10.1186/S41938-020-00277-2 DOI: https://doi.org/10.1186/s41938-020-00277-2

M. F. A. Jallow, A. A. Dahab, M. S. Albaho y V. Y. Devi, “Efficacy of Nesidiocoris tenuis (Hemiptera: Miridae) and Bacillus thuringiensis (Berliner) for controlling Tuta absoluta (Lepidoptera: Gelechiidae) in greenhouse tomato crops under Kuwait hot desert climate,” International Journal of Pest Management, pp. 1-11, 2022. https://doi.org/10.1080/09670874.2022.2162998 DOI: https://doi.org/10.1080/09670874.2022.2162998

P. Souto, G. Abraços-Duarte y E. Figueiredo, “Fruit Damage by Dicyphus cerastii and Nesidiocoris tenuis (Hemiptera: Miridae) on Tomato,” Proceedings of the 1st of International Electronic Conference on entomology, p. 10363, 2021. http://doi.org/10.3390/iece-10363 DOI: https://doi.org/10.3390/IECE-10363

H. A. Smith y K. L. Krey, “Three Release Rates of Dicyphus hesperus (Hemiptera: Miridae) for Management of Bemisia tabaci (Hemiptera: Aleyrodidae) on Greenhouse Tomato,” Insects, 10, 213, 2019. http://doi.org/10.3390/INSECTS10070213 DOI: https://doi.org/10.3390/insects10070213

G. I. González-Dufau, J. Santamaría-Guerra, K. Castrejon, I. Herrera y A. Monzón, “Interacciones tróficas entre Eretmocerus eremicus (HYMENOPTERA: APHELINIDAE) Y Trialeurodoes vaporariorum (HEMIPTERA: ALEYRODIDAE) en tomate y pimentón,” Ciencia Agropecuaria, 31, 1-18, 2020.

H. Y. Xu, N. W. Yang, H. Chi, G. D. Ren y F. H. “Wan Comparison of demographic fitness and biocontrol effectiveness of two parasitoids, Encarsia sophia and Eretmocerus hayati (Hymenoptera: Aphelinidae), against Bemisia tabaci (Hemiptera: Aleyrodidae),” Pest Management Science, vol. 74, pp. 2116-2124, 2018. http://doi.org/10.1002/ps.4908 DOI: https://doi.org/10.1002/ps.4908

A. Litwin, M. Nowak y S. Różalska, “Entomopathogenic fungi: unconventional applications,” Reviews in Environmental Science and Bio/Technology, vol. 19, pp. 23-42, 2020. http://doi.org/10.1007/S11157-020-09525-1 DOI: https://doi.org/10.1007/s11157-020-09525-1

H. Singh y N. Joshi, “Management of the aphid, Myzus persicae (Sulzer) and the whitefly, Bemisia tabaci (Gennadius), using biorational on capsicum under protected cultivation in India,” Egyptian Journal of Biological Pest Control, vol. 30, pp. 1-9, 2020. http://doi.org/10.1186/S41938-020-00266-5/FIGURES/2 DOI: https://doi.org/10.1186/s41938-020-00266-5

O. Murillo-Ramírez, M. C. Ramírez-Montoya y A. Soto-Giraldo, “Effect of sublethal doses of azadirachtina on the ability to search of the parasitoid Encarsia formosa Gahan,” Boletin Cientifico Del Centro de Museos, vol. 24, pp. 68-75, 2020. http://doi.org/10.17151/bccm.2020.24.1.4 DOI: https://doi.org/10.17151/bccm.2020.24.1.4

S. Grover, V. Jindal y G. Banta, “RNA interference mediated knockdown of juvenile hormone esterase gene in Bemisia tabaci (Gennadius): Effects on adults and their progeny,” Journal of Asia-Pacific Entomology, vol. 22, pp. 56-62, 2019. https://doi.org/10.1016/j.aspen.2018.12.002 DOI: https://doi.org/10.1016/j.aspen.2018.12.002

C. Gong, Z. Yang, Y. Hu, Q. Wu, S. Wang, Z. Guo y Y. Zhang, “Silencing of the BtTPS genes by transgenic plant‐mediated RNAi to control Bemisia tabaci MED,” Pest Management Science, vol. 78, pp. 1128-1137, 2022. https://doi.org/10.1002/ps.6727 DOI: https://doi.org/10.1002/ps.6727

D. Lu, H. Yue, L. Huang, D. Zhang, Z. Zhang, Z. Zhang y Y. Liu, “Suppression of Bta11975, an α‐glucosidase, by RNA interference reduces transmission of tomato chlorosis virus by Bemisia tabaci,” Pest Management Science, vol. 77, pp. 5294-5303, 2021. https://doi.org/10.1002/ps.6572 DOI: https://doi.org/10.1002/ps.6572

M. Taheri Sarhozaki, S. Aramideh, J. Akbarian y S. Pirsa, “Effects of ZnO nanoparticles and Kaolin in combination with NeemAzal-T/S against Bemisia tabaci and its parasitoid Eretmocerus mundus on cotton,” Chemical Review and Letters, vol. 3, pp. 131-139, 2020. http://doi.org/10.22034/CRL.2020.235381.1066

G. Salerno, M. Rebora, S. Piersanti, V. Saitta, A. Kovalev, E. Gorb y S. Gorb, “Reduction in insect attachment caused by different nanomaterials used as particle films (kaolin, zeolite, calcium carbonate)” Sustainability (Switzerland), vol. 13, p. 8250, 2021. http://doi.org/10.3390/su13158250 DOI: https://doi.org/10.3390/su13158250

M. C. Peres, G. C. de Souza Costa, L. E. L. dos Reis, L. D. da Silva, M. F. Peixoto, C. C. F. Alves, M. R. Forim, E. D. Quintela, W. L. Araújo y C. de Melo Cazal, “In natura and nanoencapsulated essential oils from Xylopia aromatica reduce oviposition of Bemisia tabaci in Phaseolus vulgaris,” Journal of Pest Science, vol. 93, pp. 807-821, 2020. http://doi.org/10.1007/S10340-019-01186-6 DOI: https://doi.org/10.1007/s10340-019-01186-6

plaga

Descargas

Publicado

2024-11-05

Cómo citar

Francisco Francisco, N. (2024). Tendencias en las alternativas de control de Bemisia tabaci en cultivos agrícolas intensivos. EPISTEMUS, 18(37), e3702365. https://doi.org/10.36790/epistemus.v18i37.365

Número

Sección

Ciencia, Tecnología y Sociedad

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.