Optimizing Surface-Enhanced Raman Spectroscopy Substrates with Gold Nanospheres, Nanorods and Nanostars

Authors

  • Karla Santacruz-Gomez Universidad de Sonora https://orcid.org/0000-0002-5387-6482
  • Víctor Hugo López Durazo Universidad de Sonora
  • Samaria Jhoana Gutiérrez Félix Universidad de Sonora
  • Andrés Gutiérrez Velázquez Universidad de Sonora
  • Aracely Ángulo Molina Universidad de Sonora

DOI:

https://doi.org/10.36790/epistemus.v17i35.315

Keywords:

gold nanoparticles, localized surface plasmon, SERS, enhancement factor

Abstract

Surface-Enhanced Raman Spectroscopy is a powerful technique that boosts the distinctive fingerprint signals of molecules, making them more accessible for analysis. It utilizes metallic nanoparticles, acting as amplifiers, to greatly enhance the signals emitted by the molecules. This study aimed to explore the SERS potential of gold nanoparticles (AuNPs) with different geometries using a non-resonant molecule, 4-MBA. Nanospheres (14±2 nm), nanorods (11±2 nm x 50±7 nm) and nanostars (38±4 nm) were synthesized via the HAuCl4 reduction method. All three AuNP geometries exhibited a remarkable enhancement of the Raman signal of 4-MBA by a magnitude of 104. Notably, only gold nanorods and nanostars displayed localized surface plasmon within the biological window, making them highly suitable for biological sample analysis. Meanwhile, the application of gold nanospheres should be limited to chemical SERS detection. These findings confirm the potential use of these nanostructures as SERS substrates for studying molecules with low molar...

Downloads

Download data is not yet available.

References

S. Agnello, Spectroscopy for Materials Characterization (no. 1). Wiley Online Library, 2021. DOI: https://doi.org/10.1002/9781119698029

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface enhanced Raman scattering enhancement factors: a comprehensive study," J. Phys. Chem. C J, vol. 111, no. 37, pp. 13794-13803, 2007. DOI: https://doi.org/10.1021/jp0687908

S. Zeng et al., "Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement," Sens. Actuators B: Chem., vol. 176, pp. 1128-1133, 2013. DOI: https://doi.org/10.1016/j.snb.2012.09.073

L. Jiang et al., "Surface-enhanced Raman scattering spectra of adsorbates on Cu 2 O nanospheres: charge-transfer and electromagnetic enhancement," Nanoscale vol. 5, no. 7, pp. 2784-2789, 2013. DOI: https://doi.org/10.1039/c3nr33502j

S. Liu, G. Chen, P. N. Prasad, and M. T. J. C. o. M. Swihart, "Synthesis of monodisperse Au, Ag, and Au–Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency," ACS Appl Mater Interfaces, vol. 23, no. 18, pp. 4098-4101, 2011. DOI: https://doi.org/10.1021/cm201343k

J. Reguera, J. Langer, D. Jimenez de Aberasturi, and L. M. Liz-Marzan, "Anisotropic metal nanoparticles for surface enhanced Raman scattering," Chem Soc Rev, vol. 46, no. 13, pp. 3866-3885, Jul 3 2017. DOI: https://doi.org/10.1039/C7CS00158D

E. Le Ru, M. Meyer, E. Blackie, and P. Etchegoin, "Advanced aspects of electromagnetic SERS enhancement factors at a hot spot," J Raman Spectrosc vol. 39, no. 9, pp. 1127-1134, 2008.

E. Kooij, W. Ahmed, C. Hellenthal, H. Zandvliet, and B. Poelsema, "From nanorods to nanostars: Tuning the optical properties of gold nanoparticles," Colloids Surf. A Physicochem., vol. 413, pp. 231-238, 2012. DOI: https://doi.org/10.1016/j.colsurfa.2012.01.041

A. L. Siegel and G. A. Baker, "Bespoke nanostars: synthetic strategies, tactics, and uses of tailored branched gold nanoparticles," Nanoscale Adv, vol. 3, no. 14, pp. 3980-4004, Jul 13 2021. DOI: https://doi.org/10.1039/D0NA01057J

I. Blakey, Z. Merican, and K. J. Thurecht, "A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties," Langmuir, vol. 29, no. 26, pp. 8266-74, Jul 2 2013. DOI: https://doi.org/10.1021/la401361u

R. Fenger, E. Fertitta, H. Kirmse, A. F. Thunemann, and K. Rademann, "Size dependent catalysis with CTAB-stabilized gold nanoparticles," Phys Chem Chem Phys, vol. 14, no. 26, pp. 9343-9, Jul 14 2012. DOI: https://doi.org/10.1039/c2cp40792b

L. Fabris, "Gold nanostars in biology and medicine: understanding physicochemical properties to broaden applicability," J. Phys. Chem. C J, vol. 124, no. 49, pp. 26540-26553, 2020. DOI: https://doi.org/10.1021/acs.jpcc.0c08460

A. Jillavenkatesa, S. J. Dapkunas, and L.-S. H. Lum, Particle size characterization (no. 960). National Institute of Standards and Technology, 2001.

O. C. Compton and F. E. Osterloh, "Evolution of size and shape in the colloidal crystallization of gold nanoparticles," J Am Chem Soc, vol. 129, no. 25, pp. 7793-8, Jun 27 2007. DOI: https://doi.org/10.1021/ja069033q

W. Zhang, "Nanoparticle aggregation: principles and modeling," Adv Exp Med Biol, vol. 811, pp. 19-43, 2014. DOI: https://doi.org/10.1007/978-94-017-8739-0_2

J. Amaro-Gahete et al., "A Comparative Study of Particle Size Distribution of Graphene Nanosheets Synthesized by an Ultrasound-Assisted Method," Nanomaterials (Basel), vol. 9, no. 2, p. 152, Jan 26 2019. DOI: https://doi.org/10.3390/nano9020152

S. Szunerits, J. Spadavecchia, and R. J. R. i. A. C. Boukherroub, "Surface plasmon resonance: Signal amplification using colloidal gold nanoparticles for enhanced sensitivity," Rev Anal Chem, vol. 33, no. 3, pp. 153-164, 2014. DOI: https://doi.org/10.1515/revac-2014-0011

S. Picciolini, D. Mehn, I. Ojea-Jimenez, F. Gramatica, and C. Morasso, "Hydroquinone Based Synthesis of Gold Nanorods," J Vis Exp, no. 114, p. e54319, Aug 10 2016. DOI: https://doi.org/10.3791/54319-v

C. G. Khoury and T. Vo-Dinh, "Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization," J Phys Chem C Nanomater Interfaces, vol. 2008, no. 112, pp. 18849-18859, 2008. DOI: https://doi.org/10.1021/jp8054747

E. Hemmer, A. Benayas, F. Legare, and F. Vetrone, "Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm," Nanoscale Horiz, vol. 1, no. 3, pp. 168-184, May 25 2016. DOI: https://doi.org/10.1039/C5NH00073D

O. Bibikova et al., "Surface enhanced infrared absorption spectroscopy based on gold nanostars and spherical nanoparticles," Anal Chim Acta, vol. 990, pp. 141-149, Oct 16 2017. DOI: https://doi.org/10.1016/j.aca.2017.07.045

C. Kohout, C. Santi, and L. Polito, "Anisotropic Gold Nanoparticles in Biomedical Applications," Int J Mol Sci, vol. 19, no. 11, p. 3385, Oct 29 2018. DOI: https://doi.org/10.3390/ijms19113385

W. Janetanakit et al., "Gold-Embedded Hollow Silica Nanogolf Balls for Imaging and Photothermal Therapy," ACS Appl Mater Interfaces, vol. 9, no. 33, pp. 27533-27543, Aug 23 2017. DOI: https://doi.org/10.1021/acsami.7b08398

A. H. Mo et al., "Dual-Functionalized Theranostic Nanocarriers," ACS Appl Mater Interfaces, vol. 8, no. 23, pp. 14740-6, Jun 15 2016. DOI: https://doi.org/10.1021/acsami.6b02761

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. J. M. t. Van Duyne, "SERS: Materials, applications, and the future," Mater Today, vol. 15, no. 1-2, pp. 16-25, 2012. DOI: https://doi.org/10.1016/S1369-7021(12)70017-2

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence," Anal Chem, vol. 77, no. 10, pp. 3261-6, May 15 2005. DOI: https://doi.org/10.1021/ac048176x

A. Dendramis, E. Schwinn, and R. Sperline, "A surface-enhanced Raman scattering study of CTAB adsorption on copper," J. Phys. Chem. C J, vol. 134, no. 3, pp. 675-688, 1983. DOI: https://doi.org/10.1016/0039-6028(83)90065-1

E. Le Ru, M. Meyer, E. Blackie, P. J. J. o. R. S. A. I. J. f. O. W. i. a. A. o. R. S. Etchegoin, Including Higher Order Processes,, a. Brillouin, and R. Scattering, "Advanced aspects of electromagnetic SERS enhancement factors at a hot spot," J Raman Spectrosc vol. 39, no. 9, pp. 1127-1134, 2008. DOI: https://doi.org/10.1002/jrs.1945

A. Sabur, M. Havel, and Y. Gogotsi, "SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles," vol. 39, no. 1, pp. 61-67, 2008. DOI: https://doi.org/10.1002/jrs.1814

K. Santacruz-Gomez, R. Melendrez, M. Licerio-Ramírez, A. L. Gallego-Hernandez, M. Pedroza-Montero, and R. J. J. o. N. R. Lal, "Alterations on HeLa cell actin filaments induced by PEGylated gold nanorod-based plasmonic photothermal therapy," J Nanopart Res vol. 24, no. 2, p. 38, 2022. DOI: https://doi.org/10.1007/s11051-022-05425-3

sustratos

Published

2023-08-22

How to Cite

Santacruz-Gomez, K., López Durazo, V. H., Gutiérrez Félix, S. J., Gutiérrez Velázquez, A., & Ángulo-Molina, A. (2023). Optimizing Surface-Enhanced Raman Spectroscopy Substrates with Gold Nanospheres, Nanorods and Nanostars. EPISTEMUS, 17(35), 7–15. https://doi.org/10.36790/epistemus.v17i35.315

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.