NANOPARTÍCULAS: EFECTOS EN LA SALUD HUMANA Y EL MEDIO AMBIENTE

Autores/as

DOI:

https://doi.org/10.36790/epistemus.v15i30.166

Palabras clave:

Nanopartículas, Nanomateriales, Nanotoxicología, Salud humana, Medio ambiente

Resumen

Recientemente, la nanotecnología ha sido un tema de gran interés que ofrece ventajas considerables en muchas áreas. Las características de muchos productos de consumo diario tienen significativas mejorías cuando están nanoestructurados. Por lo que actualmente se han integrado nanopartículas en alimentos, materiales de construcción, así como productos de belleza y cuidado personal, entre otros.  En ese sentido, en los últimos años se ha incrementado su uso de manera significativa, conduciendo a la liberación no regulada de dichos nanomateriales al medio ambiente. La exposición ambiental a nanopartículas tiene un efecto negativo en diversos órganos en seres humanos. Además, su acumulación ambiental afecta los procesos naturales dañando a organismos y plantas. En este artículo se describen las vías de exposición y los peligros relevantes para los seres humanos, con una breve introducción a la literatura emergente de su ecotoxicología.

 

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

M. Gómez-Garzón, "Nanomateriales, nanopartículas y síntesis verde" Repert. Med. Cir., vol. 27, no. 2, 2018.

I. Khan, K. Saeed, and I. Khan, "Nanoparticles: Properties, applications and toxicities" Arab. J. Chem., vol. 12, no. 7, pp. 908-931, 2019, doi: https://doi.org/10.1016/j.arabjc.2017.05.011.

V. K. Sharma, J. Filip, R. Zboril, and R. S. Varma, "Natural inorganic nanoparticles–formation, fate, and toxicity in the environment" Chem. Soc. Rev., vol. 44, no. 23, pp. 8410-8423, 2015, doi: https://doi.org/10.1039/C5CS00236B.

M. S. Ermolin, P. S. Fedotov, A. I. Ivaneev, V. K. Karandashev, N. N. Fedyunina, and A. A. Burmistrov, "A contribution of nanoscale particles of road-deposited sediments to the pollution of urban runoff by heavy metals" Chemosphere, vol. 210, pp. 65-75, 2018, doi: https://doi.org./10.1016/j.chemosphere.2018.06.150.

M. L. Oliveira, M. Izquierdo, X. Querol, R. N. Lieberman, B. K. Saikia, and L. F. Silva, "Nanoparticles from construction wastes: a problem to health and the environment" J. Clean. Prod., vol. 219, pp. 236-243, 2019, doi: https://doi.org/10.1080/10473289.2004.10471010.

A. V. Rane, K. Kanny, V. Abitha, and S. Thomas, "Methods for synthesis of nanoparticles and fabrication of nanocomposites," in Synt. Inor. Nanomat.: Elsevier, 2018, pp. 121-139.

A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, and N. von Goetz, "Titanium Dioxide Nanoparticles in Food and Personal Care Products" Environ. Sci. & Tech., vol. 46, no. 4, pp. 2242-2250, 2012/02/21 2012, doi: https://doi.org/10.1021/es204168d.

J. Musial, R. Krakowiak, D. T. Mlynarczyk, T. Goslinski, and B. J. Stanisz, "Titanium dioxide nanoparticles in food and personal care products—What do we know about their safety?" Nanomaterials, vol. 10, no. 6, p. 1110, 2020, doi: https://doi.org/10.3390/nano10061110.

R. K. Basniwal, "Toxicity of nanoparticles and their impact on environment" Nanosci. Plant–Soil Syst., pp. 531-543, 2017.

L. Calderón-Garcidueñas et al., "Combustion-and friction-derived magnetic air pollution nanoparticles in human hearts" Environ. Res., vol. 176, p. 108567, 2019, doi: https://doi.org/10.1016/j.envres.2019.108567.

M. Crosera et al., "Nanoparticle dermal absorption and toxicity: a review of the literature" Int. Arch. Occup. Environ. Health, vol. 82, no. 9, pp. 1043-1055, 2009, doi: https://doi.org/10.1007/s00420-009-0458-x.

G. I. Dar, M. Saeed, and A. Wu, "Toxicity of TiO2 nanoparticles," in TiO2 Nanoparticles: Applications in Nanobiotechnology and Nanomedicine, 2020, pp. 67-103.

V. Sharma, D. Anderson, and A. Dhawan, "Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2)" Apoptosis, vol. 17, no. 8, pp. 852-870, 2012, doi: https://doi.org/10.1007/s10495-012-0705-6.

M. Auffan et al., "CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro" Nanotoxicology, vol. 3, no. 2, pp. 161-171, 2009, doi: https://doi.org/10.1080/17435390902788086.

D. A. Saud Alarifi and S. Alkahtani, "Nanoalumina induces apoptosis by impairing antioxidant enzyme systems in human hepatocarcinoma cells" Int. J. Nanomedicine, vol. 10, p. 3751, 2015.

S. Alarifi, D. Ali, and S. Alkahtani, "Oxidative stress-induced DNA damage by manganese dioxide nanoparticles in human neuronal cells" Biomed Res. Int., vol. 2017, 2017, doi: https://doi.org/10.1155/2017/5478790.

S. Attarilar et al., "The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective" Front. Bioeng., vol. 8, 2020, doi: https://doi.org/10.3389/fbioe.2020.00822.

R. Wan, Y. Mo, L. Feng, S. Chien, D. J. Tollerud, and Q. Zhang, "DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM" Chem. Res. Toxicol., vol. 25, no. 7, pp. 1402-1411, 2012, doi: https://doi.org/10.1021/tx200513t.

P. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, "Cytotoxicity and genotoxicity of silver nanoparticles in human cells" ACS nano, vol. 3, no. 2, pp. 279-290, 2009, doi: https://doi.org/10.1021/nn800596w.

Z. Magdolenova, A. Collins, A. Kumar, A. Dhawan, V. Stone, and M. Dusinska, "Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles" Nanotoxicology, vol. 8, no. 3, pp. 233-278, 2014, doi: https://doi.org/10.3109/17435390.2013.773464.

T. Chen, J. Yan, and Y. Li, "Genotoxicity of titanium dioxide nanoparticles" J. Food Drug Anal., vol. 22, no. 1, pp. 95-104, 2014, doi: https://doi.org/10.1016/j.jfda.2014.01.008.

S. Singh, "Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity" Toxicol. Mech. Methods., vol. 29, no. 4, pp. 300-311, 2019, doi: https://doi.org/10.1080/15376516.2018.1553221.

G. Isani et al., "Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout" Ecotoxicol. Environ., vol. 97, pp. 40-46, 2013, doi: https://doi.org/10.1016/j.ecoenv.2013.07.001.

S. R. Saptarshi, A. Duschl, and A. L. Lopata, "Biological reactivity of zinc oxide nanoparticles with mammalian test systems: an overview" Nanomedicine, vol. 10, no. 13, pp. 2075-2092, 2015, doi: https://doi.org/10.2217/nnm.15.44.

Y. Cao, "The toxicity of nanoparticles to human endothelial cells" Cell. Molec. Toxicol. Nano., pp. 59-69, 2018, doi: https://doi.org/10.1007/978-3-319-72041-8_4.

M. Yan, Y. Zhang, K. Xu, T. Fu, H. Qin, and X. Zheng, "An in vitro study of vascular endothelial toxicity of CdTe quantum dots" Toxicology, vol. 282, no. 3, pp. 94-103, 2011, doi: https://doi.org/10.1016/j.tox.2011.01.015.

T. J. Brunner et al., "In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility" Environ. Sci. & Tech., vol. 40, no. 14, pp. 4374-4381, 2006, doi: https://doi.org/10.1021/es052069i.

A. P. Scalia Carneiro et al., "Inflammatory and oxidative stress biomarkers induced by silica exposure in crystal craftsmen" Am. J. Ind. Med., vol. 63, no. 4, pp. 337-347, 2020, doi: https://doi.org/10.1002/ajim.23088.

P. Biswas and C.-Y. Wu, "Nanoparticles and the environment" J. Air Waste Manag. Assoc. , vol. 55, no. 6, pp. 708-746, 2005, doi: https://doi.org/10.1080/10473289.2005.10464656.

M.-C. O. Chang, J. C. Chow, J. G. Watson, P. K. Hopke, S.-M. Yi, and G. C. England, "Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources" J. Air Waste Manag. Assoc. , vol. 54, no. 12, pp. 1494-1505, 2004.

D. B. Kittelson, "Engines and nanoparticles: a review" J. Aerosol Sci., vol. 29, no. 5-6, pp. 575-588, 1998, doi: https://doi.org/10.1016/S0021-8502(97)10037-4.

J. H. Vincent and C. F. Clement, "Ultrafine particles in workplace atmospheres," in Ultrafine Particles In The Atmosphere: World Scientific, 2000, pp. 141-154.

C. J. Hogan, M.-H. Lee, and P. Biswas, "Capture of viral particles in soft X-ray–enhanced corona systems: charge distribution and transport characteristics" Aerosol Sci. Technol., vol. 38, no. 5, pp. 475-486, 2004, doi: https://doi.org/10.1080/02786820490462183.

P. H. McMurry, K. Shan Woo, R. Weber, D.-R. Chen, and D. Y. Pui, "Size distributions of 3–10 nm atmospheric particles: Implications for nucleation mechanisms" Philos. Trans. R. Soc., vol. 358, no. 1775, pp. 2625-2642, 2000, doi: https://doi.org/10.1098/rsta.2000.0673.

K. Donaldson, X. Li, and W. MacNee, "Ultrafine (nanometre) particle mediated lung injury" J. Aerosol Sci., vol. 29, no. 5-6, pp. 553-560, 1998, doi: https://www.jstor.org/stable/2666952.

S. R. Fahmy and D. A. Sayed, "Toxicological perturbations of zinc oxide nanoparticles in the Coelatura aegyptiaca mussel" Toxicol. Indust. Health, vol. 33, no. 7, pp. 564-575, 2017, doi: https://doi.org/10.1177/0748233716687927.

B. Mansouri et al., "Histopathological effects following short-term coexposure of Cyprinus carpio to nanoparticles of TiO 2 and CuO" Environmen. Monit. Assess., vol. 188, no. 10, pp. 1-12, 2016, doi: https://doi.org/10.1007/s10661-016-5579-6.

A. M. Abdelazim, I. M. Saadeldin, A. A.-A. Swelum, M. M. Afifi, and A. Alkaladi, "Oxidative Stress in the Muscles of the Fish Nile Tilapia Caused by Zinc Oxide Nanoparticles and Its Modulation by Vitamins C and E" Oxid. Med. Cell. Longev. , vol. 2018, p. 6926712, 2018/04/05 2018, doi: https://doi.org/10.1155/2018/6926712.

S. M. Taghavi et al., "Effects of nanoparticles on the environment and outdoor workplaces" Electronic. Physician, vol. 5, no. 4, p. 706, 2013, doi: https://doi.org/10.14661/2013.706-712.

F. Wang et al., "Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate" App. Sci., vol. 9, no. 8, p. 1534, 2019, doi: https://doi.org/10.3390/app9081534.

L. Jiang, Q. Zhang, J. Wang, and W. Liu, "Ecotoxicological effects of titanium dioxide nanoparticles and Galaxolide, separately and as binary mixtures, in radish (Raphanus sativus)" J. Environ. Manage., vol. 294, p. 112972, 2021/09/15/ 2021, doi: https://doi.org/10.1016/j.jenvman.2021.112972.

M. Bundschuh et al., "Nanoparticles in the environment: where do we come from, where do we go to?" Environ. Sci. Euro., vol. 30, no. 1, pp. 1-17, 2018, doi: https://doi.org/10.1186/s12302-018-0132-6.

R. Handy and R. Owen, "Formulating the problems for environmental risk assessment of nanomaterials" Environ. Sci. & Tech., 2007, doi: htpps://doi.org/10.1021/es072598h.

R. D. Handy, R. Owen, and E. Valsami-Jones, "The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs" (in eng), Ecotoxicology, vol. 17, no. 5, pp. 315-25, Jul 2008, doi: https://doi.org/10.1007/s10646-008-0206-0.

H.-J. Eom and J. Choi, "Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B" Toxicol. Lett., vol. 187, no. 2, pp. 77-83, 2009, doi: https://doi.org/10.1016/j.toxlet.2009.01.028.

Descargas

Publicado

2021-11-22

Cómo citar

Navarro Espinoza, S., Meza-Figueroa, D., Soto-Puebla, D., Castañeda, B., & Pedroza-Montero, M. (2021). NANOPARTÍCULAS: EFECTOS EN LA SALUD HUMANA Y EL MEDIO AMBIENTE. EPISTEMUS, 15(30), 58–64. https://doi.org/10.36790/epistemus.v15i30.166

Número

Sección

Ciencia, Tecnología y Sociedad

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.