Uso de probióticos en el cultivo de tilapia (Oreochromis niloticus): revisión

Autores/as

DOI:

https://doi.org/10.36790/epistemus.v18i37.360

Palabras clave:

Probióticos, sistemas de cultivo, bacterias ácido lácticas, tilapia, microalgas

Resumen

En la última década, la industria acuícola ha aumentado exponencialmente y se considera que proveerá de alimento a la creciente población. El cultivo de organismos acuáticos como la tilapia representa una excelente opción por proporcionar una rica fuente de proteínas y ácidos grasos de alta calidad para la dieta humana. Sin embargo, los cultivos acuícolas están en constante amenaza por infecciones microbianas, por lo que el uso de microorganismos en forma de probióticos representa una alternativa sustentable que ofrece múltiples ventajas tanto a los organismos cultivados como a los consumidores finales por estimular la producción y buen funcionamiento del sistema inmunológico del pez, con lo cual se evita el uso indiscriminado de antibióticos. Este artículo es una revisión del uso de microorganismos utilizados como probióticos, con especial interés en los cultivos de tilapia y sus posibilidades futuras.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Camilo Barrios, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar

Estudiante de Microbiología, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Atlántico, Colombia

Citas

Saavedra Martínez, M. A., "Manejo del cultivo de tilapia," 2006. Disponible en: https://www.crc.uri.edu/download/MANEJO-DEL-CULTIVO-DE-TILAPIA-CIDEA.pdf.

M. J. Pié Orpí, “El cultivo de tilapia a nivel mundial y patologías más importantes,” Veterinaria digital, 2021. Disponible en: https://www.veterinariadigital.com/articulos/el-cultivo-de-tilapia-a-nivel-mundial-y-patologias-mas-importantes/.

“Oferta y demanda global de pescado y tilapia,” Tilapiacenter - Agrotecnología, 2023. .

Organización de las Naciones Unidas para la Alimentación y la Agricultura, “El Estado Actual de la Pesca y la Acuicultura 2022,” FAO, 2022.

FAO, “Oreochromis niloticus,” Programa de Información sobre Especies Acuáticas Cultivadas, 2024. Disponible en: https://www.fao.org/fishery/en/culturedspecies/oreochromis_niloticus/en#production.

INCAP, Instituto de nutrición de Centro América y Panamá (INCAP). Organización panamericana de la salud (OPS). 2012.

Gobernación de México, “Producción de Tilapia a través de la Acuacultura,” Fideicomiso de Riesgo Compartido, 2017. Disponible en: https://www.gob.mx/firco/articulos/produccion-de-tilapia-a-traves-de-la-acuacultura?idiom=es#:~:text=México es el noveno productor de Tilapia a nivel mundial,%2C Guerrero%2C Hidalgo y México.

J. D. Murcia, “En 2022, la acuicultura creció 20% y la tilapia roja ocupó 92% del mercado de EE.UU.,” AgroNegocios, 2023. Disponible en: https://www.agronegocios.co/agricultura/en-2022-la-acuicultura-crecio-20-y-la-tilapia-roja-ocupa-92-del-mercado-de-ee-uu-3568863.

J. Li et al., “Biodiversity responses of gut mycobiota and bacteriophages induced by probiotic consumption,” J. Funct. Foods, vol. 106, no. mayo, p. 105615, 2023, DOI: 10.1016/j.jff.2023.105615. DOI: https://doi.org/10.1016/j.jff.2023.105615

A. Samir y M. Al, “Utilizing date pits in microencapsulation: Effect of different variations on Probiotic survivability under in vitro digestion,” LWT, vol. 183, no. Abril, p. 114917, 2022, DOI: 10.1016/j.lwt.2023.114917. DOI: https://doi.org/10.1016/j.lwt.2023.114917

M. A. Gaffar et al., “Effects of probiotics on growth, survival, and intestinal and liver morphometry of Gangetic mystus (Mystus cavasius),” Saudi J. Biol. Sci., vol. 30, no. 7, p. 103683, 2023, DOI: 10.1016/j.sjbs.2023.103683. DOI: https://doi.org/10.1016/j.sjbs.2023.103683

C. Castañeda Guillot, “Probióticos, puesta al día,” Rev. Cubana Pediatr., vol. 90, no. 2, pp. 286–298, 2018. Disponible en: http://scielo.sld.cu.

A. L. de las Cagigas Reig y J. Blanco Anesto, “Prebióticos y probióticos, una relación beneficiosa,” Rev. Cuba. Aliment. Nutr., vol. 16, no. 1, pp. 63–68, 2002.

P. Konieczka et al., “Feeding Bacillus-based probiotics to gestating and lactating sows is an efficient method for improving immunity, gut functional status and biofilm formation by probiotic bacteria in piglets at weaning,” Anim. Nutr., vol. 13, pp. 361–372, 2023, DOI: 10.1016/j.aninu.2023.03.003. DOI: https://doi.org/10.1016/j.aninu.2023.03.003

N. A. Zabidi et al., “Targeting gut microbiota and metabolism as the major probiotic mechanism - an evidence-based review,” Int. J. Biol. Macromol., vol. 2, no. 2, pp. 33–47, 2022, DOI: 10.1016/j.tifs.2023.06.013. DOI: https://doi.org/10.1016/j.tifs.2023.06.013

C. Le, Y. Zha, Y. Li, D. Sun, H. Lu y B. Yin, “Eutrophication of lake waters in China: Cost, causes, and control,” Environ. Manage., vol. 45, no. 4, pp. 662–668, 2010, DOI: 10.1007/s00267-010-9440-3. DOI: https://doi.org/10.1007/s00267-010-9440-3

H. Sheikh, A. John, N. Musa, L. A. abdulrazzak, M. Alfatama y A. Fadhlina, “Vibrio spp. and Their Vibriocin as a Vibriosis Control Measure in Aquaculture,” Appl. Biochem. Biotechnol., vol. 194, no. 10, pp. 4477–4491, 2022, DOI: 10.1007/s12010-022-03919-3. DOI: https://doi.org/10.1007/s12010-022-03919-3

FAO, “Aquaculture Methods and Practices: a Selected Review,” FAO.org, 1989. Disponible en: https://www.fao.org/3/t8598e/t8598e05.htm#4.

E. A. González Legarda, “Impacto ambiental de la acuicultura intensiva en los componentes agua y sedimento en el lago Guamuez, Nariño,” 2017.

S. Stevenson, A. Cadec, G. Milana y N. Torvalds, Intensive aquaculture. 2013, pp. 1–6.

G. R. Robles-Porchas, T. Gollas-Galván, M. Martínez-Porchas, L. R. Martínez-Cordova, A. Miranda-Baeza y F. Vargas-Albores, “The nitrification process for nitrogen removal in biofloc system aquaculture,” Rev. Aquac., vol. 12, no. 4, pp. 2228–2249, 2020, DOI: 10.1111/raq.12431. DOI: https://doi.org/10.1111/raq.12431

A. Wang, C. Ran, Y. Wang, Z. Zhang, Q. Ding y Y. Yang, “Use of probiotics in aquaculture of China—a review of the past decade,” Fish Shellfish Immunol., 2019, DOI: 10.1016/j.fsi.2018.12.026. DOI: https://doi.org/10.1016/j.fsi.2018.12.026

K. K. Mugimba, D. K. Byarugaba, S. Mutoloki, Ø. Evensen y H. M. Munang’Andu, “Challenges and solutions to viral diseases of finfish in marine aquaculture,” Pathogens, vol. 10, no. 6, pp. 1–21, 2021, DOI: 10.3390/pathogens10060673. DOI: https://doi.org/10.3390/pathogens10060673

G. M. M. Sanches-Fernandes, I. Sá-Correia y R. Costa, “Vibriosis Outbreaks in Aquaculture: Addressing Environmental and Public Health Concerns and Preventive Therapies Using Gilthead Seabream Farming as a Model System,” Front. Microbiol., vol. 13, no. julio, pp. 1–25, 2022, DOI: 10.3389/fmicb.2022.904815. DOI: https://doi.org/10.3389/fmicb.2022.904815

E. Garibay-Valdez et al., “Longitudinal variations in the gastrointestinal microbiome of the white shrimp, Litopenaeus vannamei,” PeerJ, vol. 9, pp. 1–26, 2021, DOI: 10.7717/peerj.11827. DOI: https://doi.org/10.7717/peerj.11827

M. S. Kim, E. Y. Min, J. H. Kim, J. K. Koo y J. C. Kang, “Growth performance and immunological and antioxidant status of Chinese shrimp, Fennerpenaeus chinensis reared in bio-floc culture system using probiotics,” Fish Shellfish Immunol., vol. 47, no. 1, pp. 141–146, 2015, DOI: 10.1016/j.fsi.2015.08.027. DOI: https://doi.org/10.1016/j.fsi.2015.08.027

A. Zabidi et al., “Effects of Probiotics on Growth, Survival, Water Quality and Disease Resistance of Red Hybrid Tilapia (Oreochromis spp.) Fingerlings in a Biofloc System,” Animals, vol. 11, 2021. DOI: https://doi.org/10.3390/ani11123514

H. Guo et al., “Gut bacterial consortium enriched in a biofloc system protects shrimp against Vibrio parahaemolyticus infection,” Microbiome, vol. 11, no. 1, pp. 1–19, 2023, DOI: 10.1186/s40168-023-01663-2. DOI: https://doi.org/10.1186/s40168-023-01663-2

L. R. Martínez-Córdova, M. Martínez-Porchas, J. A. López-Elías y L. F. Enríquez-Ocaña, “Uso De Microorganismos En El Cultivo De Crustáceos,” Biotecnia, vol. 16, no. 3, pp. 50–55, 2014, DOI: 10.18633/bt.v16i3.141. DOI: https://doi.org/10.18633/bt.v16i3.141

Y. B. Wang, Z. Q. Tian, J. T. Yao y W. fen Li, “Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response,” Aquaculture, vol. 277, no. 3–4, pp. 203–207, 2008, DOI: 10.1016/j.aquaculture.2008.03.007. DOI: https://doi.org/10.1016/j.aquaculture.2008.03.007

M. de L. Pérez-Chabela, Y. M. Alvarez-Cisneros, J. Soriano-Santos y M. A. Pérez-Hernández, “The probiotics and their metabolites in aquaculture. A review,” Hidrobiologica, vol. 30, no. 1, pp. 93–105, 2020, DOI: 10.24275/uam/izt/dcbs/hidro/2020v30n1/perez.

M. K. P. Iwashita, I. B. Nakandakare, J. S. Terhune, T. Wood y M. J. T. Ranzani-Paiva, “Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus,” Fish Shellfish Immunol., vol. 43, no. 1, pp. 60–66, 2015, doi: 10.1016/j.fsi.2014.12.008. DOI: https://doi.org/10.1016/j.fsi.2014.12.008

B. Gomez-Gil, A. Roque y G. Velasco-Blanco, “Culture of Vibrio alginolyticus C7b, a potential probiotic bacterium, with the microalga Chaetoceros muelleri,” Aquaculture, vol. 211, no. 1–4, pp. 43–48, 2002, doi: 10.1016/S0044-8486(02)00004-2. DOI: https://doi.org/10.1016/S0044-8486(02)00004-2

T.-W. Chu, Y. Chu, W.-T. Sun, C.-Y. Pan, C.-H. Pan y D.-S. Ding, “Nutrient enrichment and probiotics for sea urchin Anthocidaris crassipina larvae in captivity to promote large-scale aquaculture.,” J. Anim. Physiol. Anim. Nutr. (Berl)., Feb. 2024, doi: 10.1111/jpn.13934. DOI: https://doi.org/10.1111/jpn.13934

A. V. Oleskin and C. Boyang, “Microalgae in Terms of Biomedical Technology: Probiotics, Prebiotics y Metabiotics,” Appl. Biochem. Microbiol., vol. 58, no. 6, pp. 813–825, 2022, doi: 10.1134/S0003683822060126. DOI: https://doi.org/10.1134/S0003683822060126

R. A. Soni, K. Sudhakar y R. S. Rana, “Spirulina – From growth to nutritional product: A review,” Trends Food Sci. Technol., vol. 69, no. noviembre, pp. 157–171, 2017, doi: 10.1016/j.tifs.2017.09.010. DOI: https://doi.org/10.1016/j.tifs.2017.09.010

V. T. Rosas, M. Bessonart, L. A. Romano y M. B. Tesser, “Fishmeal substitution for Arthrospira platensis in juvenile mullet (Mugil liza) and its effects on growth and non-specific immune parameters,” Rev. Colomb. Ciencias Pecu., vol. 32, no. 1, pp. 3–13, 2019, doi: 10.17533/udea.rccp.v32n1a01. DOI: https://doi.org/10.17533/udea.rccp.v32n1a01

J. L. Parada, G. Z. De Caire, M. C. Z. De Mulé y M. M. S. De Cano, “Lactic acid bacteria growth promoters from Spirulina platensis,” Int. J. Food Microbiol., vol. 45, no. 3, pp. 225–228, 1998, doi: 10.1016/S0168-1605(98)00151-2. DOI: https://doi.org/10.1016/S0168-1605(98)00151-2

G. Z. De Caire, J. L. Parada, M. C. Zaccaro y M. M. S. De Cano, “Effect of Spirulina platensis biomass on the growth of lactic acid bacteria in milk,” World J. Microbiol. Biotechnol., vol. 16, no. 6, pp. 563–565, 2000, doi: 10.1023/A:1008928930174. DOI: https://doi.org/10.1023/A:1008928930174

S. H. Al-Deriny et al., “The synergistic effects of Spirulina platensis and Bacillus amyloliquefaciens on the growth performance, intestinal histomorphology, and immune response of Nile tilapia (Oreochromis niloticus),” Aquac. Reports, vol. 17, no. abril, p. 100390, 2020, doi: 10.1016/j.aqrep.2020.100390. DOI: https://doi.org/10.1016/j.aqrep.2020.100390

H. W. Chen et al., “Purification and immunomodulating activity of C-phycocyanin from Spirulina platensis cultured using power plant flue gas,” Process Biochem., vol. 49, no. 8, pp. 1337–1344, 2014, doi: 10.1016/j.procbio.2014.05.006. DOI: https://doi.org/10.1016/j.procbio.2014.05.006

H. P. S. U. Chandrarathna, T. D. Liyanage, S. L. Edirisinghe y S. H. S. Dananjaya, “Modified Pectin and Modified Pectin Nanoparticles Modulate the Gut Microbiota and Trigger Immune Responses in Mice,” Mar. Drugs, vol. 18, no. 175, pp. 1–15, 2020. DOI: https://doi.org/10.3390/md18030175

M. Abdel-Tawwab and M. H. Ahmad, “Live Spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila,” Aquac. Res., vol. 40, no. 9, pp. 1037–1046, 2009, doi: 10.1111/j.1365-2109.2009.02195.x. DOI: https://doi.org/10.1111/j.1365-2109.2009.02195.x

N. Van Hai, “Research findings from the use of probiotics in tilapia aquaculture: A review,” Fish Shellfish Immunol., vol. 45, no. 2, pp. 592–597, 2015, doi: 10.1016/j.fsi.2015.05.026. DOI: https://doi.org/10.1016/j.fsi.2015.05.026

U. J. Maji, S. Mohanty, A. Pradhan y N. K. Maiti, “Immune modulation, disease resistance and growth performance of Indian farmed carp, Labeo rohita (Hamilton), in response to dietary consortium of putative lactic acid bacteria,” Aquac. Int., vol. 25, no. 4, pp. 1391–1407, 2017, doi: 10.1007/s10499-017-0122-5. DOI: https://doi.org/10.1007/s10499-017-0122-5

H. S. Cathers et al., “In silico, in vitro and in vivo characterization of host-associated Latilactobacillus curvatus strains for potential probiotic applications in farmed Atlantic salmon (Salmo salar),” Sci. Rep., vol. 12, no. 1, pp. 1–16, 2022, doi: 10.1038/s41598-022-23009-y. DOI: https://doi.org/10.1038/s41598-022-23009-y

N. T. Devika, A. K. Jangam, V. K. Katneni, P. K. Patil, S. Nathamuni y M. S. Shekhar, “In Silico Prediction of Novel Probiotic Species Limiting Pathogenic Vibrio Growth Using Constraint-Based Genome Scale Metabolic Modeling.,” Front. Cell. Infect. Microbiol., vol. 11, p. 752477, 2021, doi: 10.3389/fcimb.2021.752477. DOI: https://doi.org/10.3389/fcimb.2021.752477

R. M. Reda, K. M. Selim, H. M. El-Sayed y M. A. El-Hady, “In vitro selection and identification of potential probiotics isolated from the gastrointestinal Tract of Nile Tilapia, Oreochromis niloticus,” Probiotics Antimicrob. Proteins, vol. 10, no. 4, pp. 692–703, 2018, doi: 10.1007/s12602-017-9314-6. DOI: https://doi.org/10.1007/s12602-017-9314-6

J. L. Balcázar, D. Vendrell, I. de Blas, I. Ruiz-Zarzuela, J. L. Muzquiz y O. Girones, “Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish,” Aquaculture, vol. 278, no. 1–4, pp. 188–191, 2008, doi: 10.1016/j.aquaculture.2008.03.014. DOI: https://doi.org/10.1016/j.aquaculture.2008.03.014

M. de L. Pérez-Chabela, Y. M. Alvarez-Cisneros, J. Soriano-Santos y M. A. Pérez-Hernández, “Los probióticos y sus metabolitos en la acuicultura. Una Revisión,” Hidrobiológica, vol. 30, no. 1, pp. 93–105, 2020, doi: 10.24275/uam/izt/dcbs/hidro/2020v30n1/. DOI: https://doi.org/10.24275/uam/izt/dcbs/hidro/2020v30n1/Perez

tilapia

Descargas

Publicado

2024-11-12

Cómo citar

Barrios-Sánchez, C., & Calderón Alvarado, K. del C. (2024). Uso de probióticos en el cultivo de tilapia (Oreochromis niloticus): revisión. EPISTEMUS, 18(37), e3704360. https://doi.org/10.36790/epistemus.v18i37.360

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 7 8 9 10 11 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.