Prediction of the number of production stoppages in assembly lines

Authors

  • Gilberto Orrantia-Daniel Tecnológico Nacional de México
  • Jaime Sánchez-Leal Tecnológico Nacional de México/I. T. Ciudad Juárez
  • Jorge de la Riva-Rodríguez Tecnológico Nacional de México/I. T. Ciudad Juárez
  • Manuel Rodríguez-Medina Tecnológico Nacional de México/I. T. Ciudad Juárez
  • Rosa María Reyes-Martínez Tecnológico Nacional de México/I. T. Ciudad Juárez

DOI:

https://doi.org/10.36790/epistemus.v13i26.93

Keywords:

Assembly lines, chi-square test, multinomial distribution, line stoppag

Abstract

A methodology is presented to evaluate the current condition and predict the cause of inactivity of assembly lines by performing an analysis of the number of production stoppages. The behavior of the stoppages is investigated by cause and by type of work station, in order to guide better decision making. The data collected was the station that causes the line stoppage, its cause and the number of stoppages. The calculations obtained were the probabilities of the causes of stoppage, applying the chi-square goodness of fit test. Based on the multinomial distribution, models were presented to predict the causes of the next “m” stoppages of the line. In addition, one of the main findings was that the stoppages due to operators are 61.37% of all stoppages, so it is recommended to maximize the skills and knowledge of the operators.

Downloads

Download data is not yet available.

References

A. Simboli, R. Taddeo and A. Morgante, “Value and Wastes in Manufacturing. An Overview and a New Perspective Based on Eco-Efficiency”, Administrative Sciences, vol. 4, nº 3, p. 173–191, 4 July 2014. DOI: https://doi.org/10.3390/admsci4030173

S. Shingo, A Study of the Toyota Production System. From an Industrial Engineering Viewpoint, Cambridge, MA: Productivity Press, 1989.

B. W. Niebel y A. Freivalds, Ingeniería Industrial. Métodos, estándares y diseño del trabajo, Duodécima ed., México, D.F.: McGraw Hill, 2009.

M. L. Pinedo, Planning and Scheduling in Manufacturing and Services, Second edition ed., New York, NY: Springer Science+Business Media, LLC, 2009. DOI: https://doi.org/10.1007/978-1-4419-0910-7_4

X. Gu, S. Lee, X. Liang, M. Garcellano, M. Diederichs and J. Ni, “Hidden maintenance opportunities in discrete and complex production lines”, Expert Systems with Applications, vol. 40, nº 11, p. 4353–4361, 1 September 2013. DOI: https://doi.org/10.1016/j.eswa.2013.01.016

P. H. Tsarouhas, “Classification and calculation of primary failure modes in bread productionline”, Reliability Engineering and System Safety, Vol 94., p. 551–557, 2009. DOI: https://doi.org/10.1016/j.ress.2008.06.014

J. Sánchez Leal, Estadística, Primera ed., Ciudad Juárez, Chihuahua: Taller Editorial del Instituto Tecnológico de Ciudad Juárez, 2001.

A. Hayter, Probability and Statistics for Engineers and Scientists, Fourth ed., Boston, Massachusetts: Cengage, 2012.

P. Pallmann y L. A. Hothorn, “Analysis of means: a generalized approach using R”, Journal of Applied Statistics, vol. 43, nº 8, p. 1541–1560, 2016. DOI: https://doi.org/10.1080/02664763.2015.1117584

Published

2019-06-30

How to Cite

Orrantia-Daniel, G., Sánchez-Leal, J., Riva-Rodríguez, J., Rodríguez-Medina, M., & Reyes-Martínez, R. M. (2019). Prediction of the number of production stoppages in assembly lines. EPISTEMUS, 13(26), 29–35. https://doi.org/10.36790/epistemus.v13i26.93

Metrics

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.