Use of probiotics in tilapia culture (Oreochromis niloticus): Review
DOI:
https://doi.org/10.36790/epistemus.v18i37.360Keywords:
probiotics, culture systems, lactic acid bacteria, microalgae, tilapiaAbstract
In the last decade, the aquaculture industry has grown exponentially and is considered that it will provide food for the growing population. The culture of aquatic organisms such as tilapia represents an excellent option for providing a rich source of high-quality proteins and fatty acids for the human diet. However, aquaculture farms are constantly threatened by microbial infections, making the use of microorganisms in the form of probiotics a sustainable alternative that offers multiple advantages to the cultivated organisms and to final consumers. Probiotics stimulate the production and proper functioning of the fish's immune system, thereby avoiding the indiscriminate use of antibiotics. This article is a review of the use of microorganisms used as probiotics, with a special interest on tilapia farming and its future possibilities.
Downloads
References
Saavedra Martínez, M. A., "Manejo del cultivo de tilapia," 2006. Disponible en: https://www.crc.uri.edu/download/MANEJO-DEL-CULTIVO-DE-TILAPIA-CIDEA.pdf.
M. J. Pié Orpí, “El cultivo de tilapia a nivel mundial y patologías más importantes,” Veterinaria digital, 2021. Disponible en: https://www.veterinariadigital.com/articulos/el-cultivo-de-tilapia-a-nivel-mundial-y-patologias-mas-importantes/.
“Oferta y demanda global de pescado y tilapia,” Tilapiacenter - Agrotecnología, 2023. .
Organización de las Naciones Unidas para la Alimentación y la Agricultura, “El Estado Actual de la Pesca y la Acuicultura 2022,” FAO, 2022.
FAO, “Oreochromis niloticus,” Programa de Información sobre Especies Acuáticas Cultivadas, 2024. Disponible en: https://www.fao.org/fishery/en/culturedspecies/oreochromis_niloticus/en#production.
INCAP, Instituto de nutrición de Centro América y Panamá (INCAP). Organización panamericana de la salud (OPS). 2012.
Gobernación de México, “Producción de Tilapia a través de la Acuacultura,” Fideicomiso de Riesgo Compartido, 2017. Disponible en: https://www.gob.mx/firco/articulos/produccion-de-tilapia-a-traves-de-la-acuacultura?idiom=es#:~:text=México es el noveno productor de Tilapia a nivel mundial,%2C Guerrero%2C Hidalgo y México.
J. D. Murcia, “En 2022, la acuicultura creció 20% y la tilapia roja ocupó 92% del mercado de EE.UU.,” AgroNegocios, 2023. Disponible en: https://www.agronegocios.co/agricultura/en-2022-la-acuicultura-crecio-20-y-la-tilapia-roja-ocupa-92-del-mercado-de-ee-uu-3568863.
J. Li et al., “Biodiversity responses of gut mycobiota and bacteriophages induced by probiotic consumption,” J. Funct. Foods, vol. 106, no. mayo, p. 105615, 2023, DOI: 10.1016/j.jff.2023.105615. DOI: https://doi.org/10.1016/j.jff.2023.105615
A. Samir y M. Al, “Utilizing date pits in microencapsulation: Effect of different variations on Probiotic survivability under in vitro digestion,” LWT, vol. 183, no. Abril, p. 114917, 2022, DOI: 10.1016/j.lwt.2023.114917. DOI: https://doi.org/10.1016/j.lwt.2023.114917
M. A. Gaffar et al., “Effects of probiotics on growth, survival, and intestinal and liver morphometry of Gangetic mystus (Mystus cavasius),” Saudi J. Biol. Sci., vol. 30, no. 7, p. 103683, 2023, DOI: 10.1016/j.sjbs.2023.103683. DOI: https://doi.org/10.1016/j.sjbs.2023.103683
C. Castañeda Guillot, “Probióticos, puesta al día,” Rev. Cubana Pediatr., vol. 90, no. 2, pp. 286–298, 2018. Disponible en: http://scielo.sld.cu.
A. L. de las Cagigas Reig y J. Blanco Anesto, “Prebióticos y probióticos, una relación beneficiosa,” Rev. Cuba. Aliment. Nutr., vol. 16, no. 1, pp. 63–68, 2002.
P. Konieczka et al., “Feeding Bacillus-based probiotics to gestating and lactating sows is an efficient method for improving immunity, gut functional status and biofilm formation by probiotic bacteria in piglets at weaning,” Anim. Nutr., vol. 13, pp. 361–372, 2023, DOI: 10.1016/j.aninu.2023.03.003. DOI: https://doi.org/10.1016/j.aninu.2023.03.003
N. A. Zabidi et al., “Targeting gut microbiota and metabolism as the major probiotic mechanism - an evidence-based review,” Int. J. Biol. Macromol., vol. 2, no. 2, pp. 33–47, 2022, DOI: 10.1016/j.tifs.2023.06.013. DOI: https://doi.org/10.1016/j.tifs.2023.06.013
C. Le, Y. Zha, Y. Li, D. Sun, H. Lu y B. Yin, “Eutrophication of lake waters in China: Cost, causes, and control,” Environ. Manage., vol. 45, no. 4, pp. 662–668, 2010, DOI: 10.1007/s00267-010-9440-3. DOI: https://doi.org/10.1007/s00267-010-9440-3
H. Sheikh, A. John, N. Musa, L. A. abdulrazzak, M. Alfatama y A. Fadhlina, “Vibrio spp. and Their Vibriocin as a Vibriosis Control Measure in Aquaculture,” Appl. Biochem. Biotechnol., vol. 194, no. 10, pp. 4477–4491, 2022, DOI: 10.1007/s12010-022-03919-3. DOI: https://doi.org/10.1007/s12010-022-03919-3
FAO, “Aquaculture Methods and Practices: a Selected Review,” FAO.org, 1989. Disponible en: https://www.fao.org/3/t8598e/t8598e05.htm#4.
E. A. González Legarda, “Impacto ambiental de la acuicultura intensiva en los componentes agua y sedimento en el lago Guamuez, Nariño,” 2017.
S. Stevenson, A. Cadec, G. Milana y N. Torvalds, Intensive aquaculture. 2013, pp. 1–6.
G. R. Robles-Porchas, T. Gollas-Galván, M. Martínez-Porchas, L. R. Martínez-Cordova, A. Miranda-Baeza y F. Vargas-Albores, “The nitrification process for nitrogen removal in biofloc system aquaculture,” Rev. Aquac., vol. 12, no. 4, pp. 2228–2249, 2020, DOI: 10.1111/raq.12431. DOI: https://doi.org/10.1111/raq.12431
A. Wang, C. Ran, Y. Wang, Z. Zhang, Q. Ding y Y. Yang, “Use of probiotics in aquaculture of China—a review of the past decade,” Fish Shellfish Immunol., 2019, DOI: 10.1016/j.fsi.2018.12.026. DOI: https://doi.org/10.1016/j.fsi.2018.12.026
K. K. Mugimba, D. K. Byarugaba, S. Mutoloki, Ø. Evensen y H. M. Munang’Andu, “Challenges and solutions to viral diseases of finfish in marine aquaculture,” Pathogens, vol. 10, no. 6, pp. 1–21, 2021, DOI: 10.3390/pathogens10060673. DOI: https://doi.org/10.3390/pathogens10060673
G. M. M. Sanches-Fernandes, I. Sá-Correia y R. Costa, “Vibriosis Outbreaks in Aquaculture: Addressing Environmental and Public Health Concerns and Preventive Therapies Using Gilthead Seabream Farming as a Model System,” Front. Microbiol., vol. 13, no. julio, pp. 1–25, 2022, DOI: 10.3389/fmicb.2022.904815. DOI: https://doi.org/10.3389/fmicb.2022.904815
E. Garibay-Valdez et al., “Longitudinal variations in the gastrointestinal microbiome of the white shrimp, Litopenaeus vannamei,” PeerJ, vol. 9, pp. 1–26, 2021, DOI: 10.7717/peerj.11827. DOI: https://doi.org/10.7717/peerj.11827
M. S. Kim, E. Y. Min, J. H. Kim, J. K. Koo y J. C. Kang, “Growth performance and immunological and antioxidant status of Chinese shrimp, Fennerpenaeus chinensis reared in bio-floc culture system using probiotics,” Fish Shellfish Immunol., vol. 47, no. 1, pp. 141–146, 2015, DOI: 10.1016/j.fsi.2015.08.027. DOI: https://doi.org/10.1016/j.fsi.2015.08.027
A. Zabidi et al., “Effects of Probiotics on Growth, Survival, Water Quality and Disease Resistance of Red Hybrid Tilapia (Oreochromis spp.) Fingerlings in a Biofloc System,” Animals, vol. 11, 2021. DOI: https://doi.org/10.3390/ani11123514
H. Guo et al., “Gut bacterial consortium enriched in a biofloc system protects shrimp against Vibrio parahaemolyticus infection,” Microbiome, vol. 11, no. 1, pp. 1–19, 2023, DOI: 10.1186/s40168-023-01663-2. DOI: https://doi.org/10.1186/s40168-023-01663-2
L. R. Martínez-Córdova, M. Martínez-Porchas, J. A. López-Elías y L. F. Enríquez-Ocaña, “Uso De Microorganismos En El Cultivo De Crustáceos,” Biotecnia, vol. 16, no. 3, pp. 50–55, 2014, DOI: 10.18633/bt.v16i3.141. DOI: https://doi.org/10.18633/bt.v16i3.141
Y. B. Wang, Z. Q. Tian, J. T. Yao y W. fen Li, “Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response,” Aquaculture, vol. 277, no. 3–4, pp. 203–207, 2008, DOI: 10.1016/j.aquaculture.2008.03.007. DOI: https://doi.org/10.1016/j.aquaculture.2008.03.007
M. de L. Pérez-Chabela, Y. M. Alvarez-Cisneros, J. Soriano-Santos y M. A. Pérez-Hernández, “The probiotics and their metabolites in aquaculture. A review,” Hidrobiologica, vol. 30, no. 1, pp. 93–105, 2020, DOI: 10.24275/uam/izt/dcbs/hidro/2020v30n1/perez.
M. K. P. Iwashita, I. B. Nakandakare, J. S. Terhune, T. Wood y M. J. T. Ranzani-Paiva, “Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus,” Fish Shellfish Immunol., vol. 43, no. 1, pp. 60–66, 2015, doi: 10.1016/j.fsi.2014.12.008. DOI: https://doi.org/10.1016/j.fsi.2014.12.008
B. Gomez-Gil, A. Roque y G. Velasco-Blanco, “Culture of Vibrio alginolyticus C7b, a potential probiotic bacterium, with the microalga Chaetoceros muelleri,” Aquaculture, vol. 211, no. 1–4, pp. 43–48, 2002, doi: 10.1016/S0044-8486(02)00004-2. DOI: https://doi.org/10.1016/S0044-8486(02)00004-2
T.-W. Chu, Y. Chu, W.-T. Sun, C.-Y. Pan, C.-H. Pan y D.-S. Ding, “Nutrient enrichment and probiotics for sea urchin Anthocidaris crassipina larvae in captivity to promote large-scale aquaculture.,” J. Anim. Physiol. Anim. Nutr. (Berl)., Feb. 2024, doi: 10.1111/jpn.13934. DOI: https://doi.org/10.1111/jpn.13934
A. V. Oleskin and C. Boyang, “Microalgae in Terms of Biomedical Technology: Probiotics, Prebiotics y Metabiotics,” Appl. Biochem. Microbiol., vol. 58, no. 6, pp. 813–825, 2022, doi: 10.1134/S0003683822060126. DOI: https://doi.org/10.1134/S0003683822060126
R. A. Soni, K. Sudhakar y R. S. Rana, “Spirulina – From growth to nutritional product: A review,” Trends Food Sci. Technol., vol. 69, no. noviembre, pp. 157–171, 2017, doi: 10.1016/j.tifs.2017.09.010. DOI: https://doi.org/10.1016/j.tifs.2017.09.010
V. T. Rosas, M. Bessonart, L. A. Romano y M. B. Tesser, “Fishmeal substitution for Arthrospira platensis in juvenile mullet (Mugil liza) and its effects on growth and non-specific immune parameters,” Rev. Colomb. Ciencias Pecu., vol. 32, no. 1, pp. 3–13, 2019, doi: 10.17533/udea.rccp.v32n1a01. DOI: https://doi.org/10.17533/udea.rccp.v32n1a01
J. L. Parada, G. Z. De Caire, M. C. Z. De Mulé y M. M. S. De Cano, “Lactic acid bacteria growth promoters from Spirulina platensis,” Int. J. Food Microbiol., vol. 45, no. 3, pp. 225–228, 1998, doi: 10.1016/S0168-1605(98)00151-2. DOI: https://doi.org/10.1016/S0168-1605(98)00151-2
G. Z. De Caire, J. L. Parada, M. C. Zaccaro y M. M. S. De Cano, “Effect of Spirulina platensis biomass on the growth of lactic acid bacteria in milk,” World J. Microbiol. Biotechnol., vol. 16, no. 6, pp. 563–565, 2000, doi: 10.1023/A:1008928930174. DOI: https://doi.org/10.1023/A:1008928930174
S. H. Al-Deriny et al., “The synergistic effects of Spirulina platensis and Bacillus amyloliquefaciens on the growth performance, intestinal histomorphology, and immune response of Nile tilapia (Oreochromis niloticus),” Aquac. Reports, vol. 17, no. abril, p. 100390, 2020, doi: 10.1016/j.aqrep.2020.100390. DOI: https://doi.org/10.1016/j.aqrep.2020.100390
H. W. Chen et al., “Purification and immunomodulating activity of C-phycocyanin from Spirulina platensis cultured using power plant flue gas,” Process Biochem., vol. 49, no. 8, pp. 1337–1344, 2014, doi: 10.1016/j.procbio.2014.05.006. DOI: https://doi.org/10.1016/j.procbio.2014.05.006
H. P. S. U. Chandrarathna, T. D. Liyanage, S. L. Edirisinghe y S. H. S. Dananjaya, “Modified Pectin and Modified Pectin Nanoparticles Modulate the Gut Microbiota and Trigger Immune Responses in Mice,” Mar. Drugs, vol. 18, no. 175, pp. 1–15, 2020. DOI: https://doi.org/10.3390/md18030175
M. Abdel-Tawwab and M. H. Ahmad, “Live Spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila,” Aquac. Res., vol. 40, no. 9, pp. 1037–1046, 2009, doi: 10.1111/j.1365-2109.2009.02195.x. DOI: https://doi.org/10.1111/j.1365-2109.2009.02195.x
N. Van Hai, “Research findings from the use of probiotics in tilapia aquaculture: A review,” Fish Shellfish Immunol., vol. 45, no. 2, pp. 592–597, 2015, doi: 10.1016/j.fsi.2015.05.026. DOI: https://doi.org/10.1016/j.fsi.2015.05.026
U. J. Maji, S. Mohanty, A. Pradhan y N. K. Maiti, “Immune modulation, disease resistance and growth performance of Indian farmed carp, Labeo rohita (Hamilton), in response to dietary consortium of putative lactic acid bacteria,” Aquac. Int., vol. 25, no. 4, pp. 1391–1407, 2017, doi: 10.1007/s10499-017-0122-5. DOI: https://doi.org/10.1007/s10499-017-0122-5
H. S. Cathers et al., “In silico, in vitro and in vivo characterization of host-associated Latilactobacillus curvatus strains for potential probiotic applications in farmed Atlantic salmon (Salmo salar),” Sci. Rep., vol. 12, no. 1, pp. 1–16, 2022, doi: 10.1038/s41598-022-23009-y. DOI: https://doi.org/10.1038/s41598-022-23009-y
N. T. Devika, A. K. Jangam, V. K. Katneni, P. K. Patil, S. Nathamuni y M. S. Shekhar, “In Silico Prediction of Novel Probiotic Species Limiting Pathogenic Vibrio Growth Using Constraint-Based Genome Scale Metabolic Modeling.,” Front. Cell. Infect. Microbiol., vol. 11, p. 752477, 2021, doi: 10.3389/fcimb.2021.752477. DOI: https://doi.org/10.3389/fcimb.2021.752477
R. M. Reda, K. M. Selim, H. M. El-Sayed y M. A. El-Hady, “In vitro selection and identification of potential probiotics isolated from the gastrointestinal Tract of Nile Tilapia, Oreochromis niloticus,” Probiotics Antimicrob. Proteins, vol. 10, no. 4, pp. 692–703, 2018, doi: 10.1007/s12602-017-9314-6. DOI: https://doi.org/10.1007/s12602-017-9314-6
J. L. Balcázar, D. Vendrell, I. de Blas, I. Ruiz-Zarzuela, J. L. Muzquiz y O. Girones, “Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish,” Aquaculture, vol. 278, no. 1–4, pp. 188–191, 2008, doi: 10.1016/j.aquaculture.2008.03.014. DOI: https://doi.org/10.1016/j.aquaculture.2008.03.014
M. de L. Pérez-Chabela, Y. M. Alvarez-Cisneros, J. Soriano-Santos y M. A. Pérez-Hernández, “Los probióticos y sus metabolitos en la acuicultura. Una Revisión,” Hidrobiológica, vol. 30, no. 1, pp. 93–105, 2020, doi: 10.24275/uam/izt/dcbs/hidro/2020v30n1/. DOI: https://doi.org/10.24275/uam/izt/dcbs/hidro/2020v30n1/Perez
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 EPISTEMUS
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The magazine acquires the patrimonial rights of the articles only for diffusion without any purpose of profit, without diminishing the own rights of authorship.
The authors are the legitimate owners of the intellectual property rights of their respective articles, and in such quality, by sending their texts they express their desire to collaborate with the Epistemus Magazine, published biannually by the University of Sonora.
Therefore, freely, voluntarily and free of charge, once accepted the article for publication, they give their rights to the University of Sonora for the University of Sonora to edit, publish, distribute and make available through intranets, Internet or CD said work, without any limitation of form or time, as long as it is non-profit and with the express obligation to respect and mention the credit that corresponds to the authors in any use that is made of it.
It is understood that this authorization is not an assignment or transmission of any of your economic rights in favor of the said institution. The University of Sonora guarantees the right to reproduce the contribution by any means in which you are the author, subject to the credit being granted corresponding to the original publication of the contribution in Epistemus.
Unless otherwise indicated, all the contents of the electronic edition are distributed under a license for use and Creative Commons — Attribution-NonCommercial-ShareAlike 4.0 International — (CC BY-NC-SA 4.0) You can consult here the informative version and the legal text of the license. This circumstance must be expressly stated in this way when necessary.
The names and email addresses entered in this journal will be used exclusively for the purposes established in it and will not be provided to third parties or for their use for other purposes.